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 Develop a framework for optimal control of continuous combustor

 Optimize distribution of secondary air addition to spray combustor

 Consider steady, one-dimensional spray combustion model

 Formulate ODEs accounting for droplet heating, vaporization, and          
acceleration; air addition; vapor-air mixing; exothermic oxidation

 Apply the Sequential Linear Quadratic  (SLQ) Algorithm of Sideris & 
Bobrow with rate of air addition per increment of length as the 
control variable.



Three combustion models were used for optimization:

 Vaporization – Mixing – Reaction Model. Seven characteristic rates
or time:  gas residence, droplet residence (or lifetime), droplet 
heating rate, vaporization rate, droplet acceleration, 
vapor / air -mixing rate,  and oxidation rate.

 Vaporization - Mixing Model.  Six characteristic rates: oxidation 
occurs upon mixing.

 Vaporization  Model. Five characteristic rates: mixing and  
oxidation occur upon vaporization.

All models have the rate of secondary-air addition as a 
control variable.  All rates can have multi-time scales.

The targets of the optimization process are to have a 
prescribed amount of total air addition with complete
vaporization and burning of the fuel within the prescribed   

length.

The net effect of air addition is not obvious; it accelerates gas and         
droplet, decreasing residence time; cools gas, slowing vaporization; 
increases relative gas-drop velocity, increasing vaporization rate.



Based on conservation 
principles, ODEs govern 
drop radius, velocity , 
temperature; gas velocity, 
temperature; mass 
fractions of fuel vapor and 
oxygen; mass flux of 
secondary air as a function 
of downstream position.

Source terms on RHS 
result from vaporization, 
droplet heating, droplet 
drag, gas mixing, 
air addition,
exothermic reaction,
and gas expansion



Results without optimization for nondimensional droplet volume 
versus downstream position in combustor: obviously, models which
assume some rates are infinite result in faster vaporization 
and burning. 



Three profiles are prescribed which distribute secondary air addition 
differently with Vaporization-Mixing model: exponential adds most air 
in upstream portion before mid-length position; power profile adds 
most air downstream; flat profile has uniform distribution.  With 
optimization process, the profile is determined not prescribed.



OPTIMIZATION   METHOD
 The nonlinear system

of ODEs are solved 
numerically with a 
dependence on the control variable U.

 Target values at the 
exit are set in a 
consistent manner.

 A cost function J  
is  created in both a 
continuous and a 
discrete form.



 Finite differencing creates a
relationship between adjacent 
discrete values.

 A quadratic form is taken for 
the cost function. It can
account for exit values as well 
as interior values. We used only 
exit values here.

Weighting factors are prescribed 
for the contribution of each exit 
value to the cost function.

Step 0: Provide initial guess for the control (typically zero)

Step 1: Simulate Nonlinear Dynamic Equations and obtain state 

trajectory



Step 2:  Linearize the nonlinear system dynamics 
about      zm = [ zT(0), zT(1), …, zT(n), …, zT(N) ]T

and         Um = [ U(0), U(1), …, U(n), …, U(N-1)]T ; subscript m 
indicates the  iteration step.

The overbar indicates the linearized variable.

Now, solve the Linear Quadratic (LQ) optimal control 
for the cost function subject to linearized dynamics, using 
established methods.  This does not immediately give the 
optimal control for the nonlinear problem. Iteration to a 
converged solution is required. 

Step 3: Use the solution Um of the previous LQ sub problem 
as a search direction and compute the next control:



The linearization about the previous solution in the iteration 
requires the use of gradients of all terms on the RHS of the 
ODEs with respect to each of the independent variables.



Parameters for one optimization
R¤ 0 = 60 microns,    L¤ = 0:4 m; 
u¤ l0 = 30 m/s,    u¤g 0 = 40 m/s ;
T¤ 0 = 900 K,    T¤l0 = 300 K ; 
p = 10 atm .

Examples of gradient terms but not a complete list.



Optimal control for the Vaporization-Mixing model.  
Distribution of air-addition mass flux. 



Optimal control for the Vaporization-Mixing model. 
Liquid-phase and gas-phase variables versus 

streamwise position.



Optimal control for the Vaporization-Mixing-Reaction model.  
Multimodal distribution of air-addition mass flux 
appears when more characteristic times are used. 



Optimal control for the Vaporization-Mixing-Reaction model. 
Liquid-phase and gas-phase variables versus  streamwise
position.



Concluding Remarks
• A framework for optimal control of combustors has 

been presented using the SLQ Algorithm.

• The optimization algorithm allows for placing 
constraints on exit values, interior-domain values, 
and integrals.

• Examples have been given for optimization of 
secondary-air addition to a continuous combustor 
using several appropriate 
spray combustion models.

• The challenge and the complexity of the resulting 
optimal control increases as the number of 
characteristic times increase.



Thank you for your attention.


























