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Nonlinear, transverse-mode, liquid-propellant-rocket-motor combustion instability is examined with a two-

dimensional model. The three-dimensional equations are integrated over the axial direction, for a multi-orifice short

nozzle. Nonlinear transverse-wave oscillations in the circular combustion chamber are examined with the primary

flow in the axial direction. Turbulent mixing of methane and gaseous oxygen with coaxial injection is analyzed. The

combustion has two characteristic times, one for mixing and the other for chemical kinetics, producing a time lag in

the energy-release rate relative to pressure. Then, the coupled combustion process andwave dynamics are calculated

for a 10-injector chamber with methane and gaseous-oxygen propellants. The linear first tangential mode is imposed

initially.Nonlinear triggering occurs; above a critical initial amplitude, the amplitude grows; otherwise, it decayswith

time. The second tangential mode also develops, and the nonlinear resonance creates a subharmonic mode with a

frequency equal to the difference between the two tangential-mode frequencies. A modification of the characteristic

times leads to a triggered instability, in which the first tangential mode transfers energy to its harmonics without the

appearance of the second tangential mode or the subharmonic mode. Local pulses of pressure and velocity can also

trigger instabilities with a strong sensitivity to the direction of the pulse.

Nomenclature

A = chemical-rate constant, m3∕�s · kg�
Aentrance = cross-sectional area of nozzle entrance, m2

Athroat = cross-sectional area of nozzle throat, m2

A, B = constants defined in Eq. (21)
a = speed of sound, m∕s
a, b = chemical-rate constants
C = constant defined in Eq. (25)
cp = specific heat at constant pressure, J∕K · kg
cv = specific heat at constant volume, J∕K · kg
D = mass diffusivity, m2∕s
E = energy-release rate, J∕kg · s
f = frequency, s−1

G = Green’s function
h = specific enthalpy, J∕kg
K, K̂ = constants defined in Eqs. (16) and (17)
L = chamber length, m
M = Mach number
_m = mass-flow rate, kg∕s
p = pressure, N · m–2

R = chamber radius, m
R = mixture specific gas constant, J∕kg · K
Ri = inner radius of coaxial jet, m
Ro = outer radius of coaxial jet, m
Ru = universal gas constant, J∕kg · mol · K
r = radial position, m
r1∕2 = half-width of coaxial jet, m
s = specific entropy, J∕K · kg
T = temperature, K
t = time, s
U = coaxial jet velocity, m∕s

u = vector velocity, m∕s
uj = Cartesian velocity component, m∕s
ur = radial velocity component, m∕s
uθ = tangential velocity component, m∕s
xj = Cartesian coordinate, m
Yi = mass fraction of species i

Greek symbols

α, β = Shvab–Zel’dovich variables
γ = ratio of specific heats
ϵ = activation energy, J∕kg · mol
θ = azimuthal position
κ = variable defined after Eq. (32)
ν = kinematic viscosity, m2∕s
νT = turbulent kinematic viscosity, m2∕s
ρ = density, kg · m−3

τM = characteristic mixing time, s
τR = characteristic reaction time, s
ϕ = velocity potential, m2∕s
ωi = reaction rate of species i, s–1

Subscripts

F = fuel
i = index for chemical species
j = index for Cartesian coordinates
O = oxidizer
0 = undisturbed state

I. Introduction

L IQUID-PROPELLANT-ROCKET-ENGINE (LPRE) combus-
tion instability has been a long-standing natural phenomenon,

which causes problems and creates the need for control. In LPRE, the
combustion process produces a very high energy-release rate per unit
volume which, in many circumstances, has characteristic times that
result in the reinforcement of the acoustical oscillations and pro-
duces very high amplitudes. These oscillations can cause undesirable
oscillations in thrust, vibrations that result in problems for people or
equipment on the spacecraft, and increased heat transfer in already
critical regions (e.g., the nozzle throat). Transverse spinning waves
can have substantially larger amplitudes than longitudinal waves
because no shockwaves form and thereby dissipation is reduced. The
combustion concentrates near the injector end, resulting in very high
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heat-transfer rates to the injector. The increased heat transfer at the
injector and/or nozzle throat often leads to the destruction of those
wall materials and disaster for the flight mission.
Theoretical, computational, and experimental research has been

underway at varying levels of intensity for more than a half-century.
Here, the history of theoretical and computational research will be
briefly reviewed, followed by an explanation of the newmethods and
new goals in this current research. Important historical efforts on
solid-propellant combustion and other combustion engines will not
be discussed because the physics are different and brevity is
desirable.Most of the physics of the oscillationswere identified in the
1950s and 1960s, but the knowledge of the details of coupling with
the combustion processes has trailed. An excellent compilation of
major research during that early period is provided by Harrje and
Reardon [1].Also, an interesting discussion of the famous F-1 rocket-
motor instability problems is given by Oefelein and Yang [2]. Two
types of instability occur: linear or spontaneous instability and
nonlinear or triggered instability. The describing terms pertain to
initiation only; all instabilities of concern have nonlinear behavior
once established. Linear instabilities grow in amplitude from the
normal noise associated with the high mass-flow multi-injector
rocket-chamber environment; theoretically, they grow from infini-
tesimal disturbances. Nonlinear instabilities require a disturbance of
sufficient magnitude to overcome a required threshold. Without such
a disturbance, linear stability is exhibited. A disruption in propellant
mass flow or a very large fluctuation caused by transient operation
can provide the necessary trigger. In experiments, the use of small
explosives has triggered instabilities. Both types are addressed in the
current work, but a triggered instability presents the greater challenge
and is emphasized here.
The longitudinal-mode linear instability was addressed exten-

sively byCrocco andCheng [3,4]. The two-parameter �n; τ� coupling
between combustion and acoustics was developed alongwith the first
method for superposition of two continua for two phases (condensed
phase and gas) for any application. The sensitive time-lag theory was
the foundation of the description of the combustion response to and
reinforcement of the acoustic oscillations. It avoided a detailed
description of the unsteady combustion process with the intent that

the two parameters n and τ, which were independent of oscillation
frequency, could be determined empirically through experiments.
On this foundation, the theory of longitudinal oscillations with
modifications due to mass, momentum, and energy exchanges
between the phases was established. The early work of Tsien [5] on
the acoustical reflections in the nozzle and handling of the throat
singularity was extended with experimental verification. The nozzle
oscillation analysis was later extended to address three-dimensional
(3-D) linear oscillations in rocket motors [6,7]. Sirignano andCrocco
[8] and Sirignano [9] showed the existence of both unstable and stable
limit-cycle oscillations for the longitudinal mode, sometimes with
shock-wave formation. The unstable limit cycle gives identification
of a threshold for triggering: below this amplitude, disturbances
decay to zero amplitude in time, whereas above it, growth to larger
amplitude occurs. The theory was later extended for longitudinal
modes [10,11] and for transverse modes [12].
A theoretical prediction of triggering was first given by Sirignano

[9] for the longitudinalmode, followed byZinn [12] for the transverse
mode. The approach predicts either a stable or unstable limit cycle for
each point in the n, τ plane near the linear-stability limit line. See, for
example, Fig. 1, which describes the longitudinal mode. The upper
plots show linear limit curves and define displacement from the linear
limits. The lower plots show nonlinear limit-cycle amplitudes as a
function of displacement. These early pioneering efforts on nonlinear
triggering did not predict the expected higher-amplitude stable limit
cycle in the n, τ domains, where an unstable limit cycle and nonlinear
triggering were predicted. Presumably, if the analyses were extended
sufficiently beyond third-order terms in the amplitude parameter, the
stable limit cycle would be determined.
The amplitude parameter ε grows as a quadratic function of the

distance from the linear-stability line. If it extends over the linear
stable region, it gives the amplitude for an unstable limit cycle and
indicates that triggering occurs when a disturbance has an amplitude
that exceeds that threshold value, as shown in the lower-left portion
of Fig. 1. If it extends over the linearly unstable region, it gives the
amplitude for a stable limit cycle toward which a very small
disturbance grows and reaches after several periods of oscillation, as
shown in the lower-right portion of Fig. 1. Later, Mitchell et al. [10]

n(0)

τ 0(0
)

n(0)

τ 0(0
)

Inward normal
displacement

(2m+1)/l (2m+1)/l

(γ+1)/(4γ) (γ+1)/(4γ)

ε2n(2)

ε2τ
0
(2)

ε2τ
0
(0)

Shaded
region
unstable

Shaded
region
unstable

Neutral
line

Outward
normal
displacement

ε2n(2)

Outward
displacement

Inward
displacement

Amplitude
decays

Amplitude
decays

Amplitude
grows

Amplitude
grows

Dε2 Dε2

ε ε

Fig. 1 Stability limits in the n, τ domain.
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improved the approach for the longitudinal-mode analysis so that, for
triggered cases, both the unstable and stable limit cycles were
predicted, and the region of triggering was more clearly defined. The
stable limit cycle contained a shock-wave discontinuity. For a portion
of the parameter domain, the unstable limit cycle also had a shock-
wave instability. See Fig. 2. The peak-to-peak and shock amplitudes
are portrayed for both stable and unstable limit cycles.
The early nonlinear analyses coming from previous works relied

on singular perturbation techniques, which were extensions of
Poincare’s method. Zinn and Powell [13] introduced the Galerkin
method to the field, still using the n, τmethods. It had the advantages
that the resulting ordinary differential equations reduced the
computational complexity, and transient behavior could be analyzed
in addition to the limit-cycle behavior. Also, it offered the ability to
account for the nonlinear transfer of energy between different natural
modes of instability. Some researchers, in a series of papers
beginning in the 1970s, used an eigenfunction expansion together
with a two-time-variable technique that had some of the same
advantages; see Awad and Culick [14], Yang et al. [15], and Culick
[16,17]. More recently, there is work with a Galerkin approach (also
known as reduced-basis modeling) by Flandro et al. [18] and Jacob
et al. [19]. Haddad and Majdalani [20] considered the effects of wall
boundary layers on the acoustics following a similar approach.
Perturbation methods and Galerkin methods require some a priori
knowledge of the relevant modes of oscillation. The elegant
asymptotics of the two-time-variable method becomes less useful
when many modes with a range of timescales are involved.
The aforementioned analyses generally used heuristic methods

rather than a first-principles approach to describe the combustion
process; in particular, either the sensitive time-lag theorywith the n, τ
parameters or an approach with the gain and phase parameters. (Note
that these two systems could be equated to the linear order. That is, the
two parameters of one system could be easily related to the two
parameters of the other system and frequency.) The exception to the
heuristic approach was the work by Sirignano and Crocco [8], which
used a simplistic chemical rate. Over several decades, some progress
was made in understanding the driving mechanisms of the LPRE
instability for subcritical and transcritical operations, in which
vaporization is rate controlling [21–34]. Supercritical operation
presents a very different situation whereby no distinction between
phases occurs. The results here will address situations in which
the propellants are injected as gas. These propellants could have
been used for gas generation to drive a turbo pump or as a coolant
before injection. Or, they could have been injected at supercritical
conditions. Therefore, the mixing and chemical-reaction model
discussed later will apply to gases only. The wave-dynamics model
presented later could be used for cases with injection of liquids if
termswere added to account for the exchange ofmomentum between

the phases. In that way, some vaporization models identified
previously could be coupled with the wave-dynamics model here in
the following analysis.
There are two general types of acoustical combustion instability:

driven instability and self-excited instability, as noted by Culick [17].
He describes evidence in some solid-propellant rockets of the former
(driven) type, in which noise or vortex shedding (a more organized
noise) causes kinematic waves (i.e., waves carried with the moving
gas) of vorticity or entropy to travel to some pointwhere an acoustical
reflection occurs. The reflected wave causes more noise or vortex
shedding after traveling back and a cyclic character results. These
driven types do not rely on acoustical chamber resonance, and
acoustical waves traveling upstream are the only type of consequence
with kinematic waves only traveling downstream by the kinematic
definition. They are much smaller in amplitude because the energy
level is limited by the driving energy. This type of instability has also
been observed in ramjet combustors, but never in liquid rockets.
Therefore, they will not be addressed in this proposed research.
Self-excited instabilities are the primary type relevant to liquid-

propellant rockets. These types are not limited in amplitude by the
energy of the initiation action; they find the energy within their own
macrobehavior as the oscillations grow and develop. Thus, the
initiation ismicrolevel, but the instability becomesmacrolevel. These
instabilities include those linear unstable situations, in which normal
low-level engine noise is sufficient to initiate the instability
oscillation, and those triggered instabilities, which require a larger
initial disturbance to initiate the nonlinear oscillation. Physically, the
rogue disturbance is some deviant behavior in the operation that has
uncertainty with regard to location in the physical coordinates,
duration, and magnitude. The deviant behavior jolts the steady-state
behavior. Sometimes, there is a recovery and a return to the steady
state, but, at other times, the development of the oscillation occurs
with a growing of the oscillation amplitude until the limit cycle is
reached.
For the driven instability, the noise or disturbance terms determine

the final oscillatory behavior. If the noisewere eliminated, that type of
instability disappears. For the instability of liquid rocket motors,
moderate (normal steady-state rumbling) noise might initiate the
linear instability in certain operational domains, and large disruptive
noise (e.g., small bomb or large operational change) might trigger the
nonlinear instability in some other operational domain. In those
cases, noise or disruptions are only initiators with modest energy
levels compared to the energy of the ultimate oscillation. The
initiators can be turned off once the instability starts, and the oscilla-
tion will remain and grow. That is, it becomes driven by a coupling
between combustion and acoustics. The stochastic nature pertains
only to the initiationmechanism,whichmoves the dynamics from the
steady state (or nonoscillatory starting transient) to a stable limit cycle
(the periodic or chaotic nonlinear oscillation). The limit cycles and
the equilibrium points are neither stochastic in nature nor stochastic
with regard to the ultimate driving mechanism.
The instability mechanism is made further complex due to the

possible injector-to-injector interactions and interactions with the
feed system and upstream manifold. Thus, to understand the source
and result of perturbationwith the consequent instabilitymechanism,
the rocket motor, with its very large number of propellant-injector
streams, must be treated as a complex system. Each of these streams
can be viewed as a component with semi-autonomy but strong
coupling with other streams. The complex systems contain 1) many
building blocks that can be considered as semi-autonomous
components or subsystems, 2) connectivity (networking) among the
complex-system components, 3) a multiscale structure, 4) a self-
organizing capability such that the overall structure and behavior are
not deducible as merely the sum of its building blocks (nonlinear
synergism among the components is vital) and macrolevel behavior
can emerge from the interactions among the components, and
5) unpredictable behavior that includes chaotic behavior. Therefore,
the characteristics of a complex system can be seen in the liquid-
propellant rocket motor. The key knowledge areas for addressing
complex systems can include nonlinear dynamics, statistics, net-
works, optimization, multi-agent-based simulation, and the many
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Fig. 2 Schematic of nonlinear limit-cycle amplitudes found by Mitchell
et al. [10].
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subareas of these fields [35–46]. Of course, combustion dynamics are
a rich and challenging subarea of nonlinear dynamics.
Each injector stream in the rocket-motor system can be viewed as a

component of such a complex system with a degree of autonomy but
strongly networked. An individual component can exhibit a behavior
that creates a certain structure, which eventually has a global
consequence for the system.
There have been many studies of nonlinear combustion instability

that relate to solid-propellant rocket motors, ramjet engines, gas-
turbine engines, and industrial furnaces, which will not be discussed
in any detail here. However, note that there has been no prediction
or experimental evidence of triggering in those devices. See, for
example, the nonlinear analyses of solid rockets [47,48], of a
chemical-rate-controlled gaseous rocket [8], and of the ramjet
combustor [30], each of which predicts only the stable limit cycles.
Experimental studies of full-scale rocket motors are often

performed for final testing; however, systematic studies of combus-
tion instability in a possible design are very difficult and perhaps not
yet possible. On the other hand, numerical simulations can be used to
probe and understand the rocket motor as a complex system, and to
predict instability. A detailed simulation of combustion stability in
multi-injector LPREs is computationally intensive and has only been
simulated for simple configurations using advanced large-eddy-
simulation (LES) techniques. There are several single-injector
studies [49–58].A systematic LESof amulti-injector system is still to
be demonstrated.
The goal was to develop a model equation or a small system of

equations that describe the essential features of transverse nonlinear
oscillations in cylindrical combustion chambers for LPREs. The
combustion chamber with its many propellant injectors and
associated propellant streams will be viewed as a complex system, in
which these injectors and streams are networked, but yet have some
degree of local autonomy.
There is a special interest in studying the nonlinear triggering

phenomenon, using a first-principles description of the combustion
process. It is important to keep in the model the terms that add energy
or damp oscillations or produce a major change to the wave shape.
Here, for the first time, a prediction of both the stable and unstable
transverse-mode limit cycles will be made in parameter domains
where triggering is possible. The injected propellants will be
considered as preheated and gaseous; two-phase flows can be
considered in the future. While the aim is to establish a foundation
for future stochastic analysis of the LPRE combustion-instability
phenomenon as the behavior of a complex system, the analysis here is
deterministic, and the physical phenomena are deterministic.

II. Basic Equations for Wave Dynamics

The equations will be simplified by assuming inviscid, nonheat-
conducting, nonmass-diffusing flow. Turbulent fluctuations will be
considered small compared to acoustic amplitudes; also, the turbulent
length scales will be shorter than the acoustic wavelengths, which
also allow their neglect. The turbulence is generated largely by the
jets of propellants entering the combustion chamber, and the length
scales are determined by transverse jet dimensions and spacing
between adjacent jets. Acoustic wavelengths are determined by the
much larger chamber dimensions. Other variations with length scales
substantially shorter than the acoustic wavelength can be neglected.
The propellants will be considered to be gaseous when injected into
the combustion chamber. Mixing and chemical reaction will be
modeled. Because the combustion chamber operates at supercritical
pressure, a single-phase fluid will be considered. For the transverse
mode, variations of amplitudes in the transverse direction will be
much greater than variations in the axial direction of the cylindrical
configuration. This will facilitate the reduction of the problem from
a 3-D unsteady problem to a two-dimensional (2-D) unsteady
formulation.
The continuity equation for the fluid gives

∂ρ
∂t
� ∇ · �ρu� � 0 (1)

and the vector momentum equation for the fluid is

∂�ρu�
∂t
� ∇ · �ρuu� � ∇p � 0 (2)

in which ρ is the density, p is the pressure, and the vector velocity u
has three components. Gravity and viscosity are neglected.
The energy equation may be written as follows:

∂�ρhs�
∂t
� ∇ · �ρuhs� −

∂p
∂t
� E (3)

in which hs � h� u · u∕2; h is the specific enthalpy, hs is the
specific stagnation enthalpy, and E is the time rate of energy per unit
volume, which is converted from a chemical form to a thermal form.
A perfect gas and constant specific heats are assumed.Of course, at

the very high pressures, there should be corrections to the gas law,
and, at the high temperatures, the specific heats should be variable.
The approximation is expected to preserve the quality of the wave
dynamics and the combustion dynamics, and not hide any primary
physics. Quantitative adjustments can be considered later. It follows
that

p � ρRT �
�XN
n�1

YnRn

�
ρT (4)

a2 � γRT (5)

s

cv
� γ ln T − �γ − 1� ln p (6)

in whichR is the specific gas constant for the mixture of gases in the
chamber; Yn andRn are the mass fraction and specific gas constant,
respectively, for the nth species in the fluid mixture; T is the gas
temperature;a is the speed of sound; s is the specific entropy; cp is the
specific heat at constant pressure; cv is the specific heat at constant
volume; and γ � cp∕cv.

A. Three-Dimensional Wave Equation

The development of a wave equation begins by subtracting the
divergence of themomentum equation (2) from the time derivative of
the continuity equation (1). This yields

∂2ρ
∂t2

− ∇2p � ∇ · �∇ · �ρuu�� (7)

Neglect of the variation of the gas constant R due to the multi-
component nature of the fluid, differentiation of Eq. (4), substitution
from Eq. (3) for enthalpy, differentiation again with respect to the
time, reorganization of the equation, use of the combined first and
second laws of thermodynamics to write ρ∇h � ∇p� ρT∇s, and
substitution for ∇h yields

a2
∂2ρ
∂t2
� ∂2p

∂t2
−
∂ρ
∂t

∂a2

∂t
− �γ − 1� ∂E

∂t

� �γ − 1� ∂
∂t

�
D�u · u�∕2

Dt
� u · ∇p� ρTu · ∇s

�
(8)

Neglect is made of entropy gradients in the flow for the purpose of
developing a model equation. One can assume that fine-scale mixing
eliminates these entropy gradients. This removes the last term of the
preceding equation. The previous two terms can be shown to cancel
each other by taking the dot product of velocity u with Eq. (2). The
length scales for transverse gradients of entropy, other scalar
properties, and vorticity are of the order of the injector diameter, the
order of spacing between adjacent injectors, or smaller. These
dimensions are smaller than the common wavelengths of oscillations
in the combustion chamber. Also, these properties advect and diffuse,
but are not propagated by acoustic waves. Turbulent mixing will
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uniformize these quantities rapidly, whereas acoustical pressure and
velocity oscillations will not be vitiated by turbulence.
Because of the sequential vector-calculus operations, tensor

notation will be more convenient. The use of Cartesian coordinates
will be temporary; after obtaining the 2-Dmodel equation, a switch to
cylindrical polar coordinates will be made. The previously described
analysis yields

∂2p
∂t2

− a2
∂2p

∂xj∂xj
� ∂ρ

∂t
∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

(9)

The left-hand side of the equation represents the wave operator in
three dimensions.Amild nonlinearity appears through the coefficient
a2. The first and third terms on the right-hand side are strongly
nonlinear terms that are conservative, but will affect the wave shape.
The second term on the right represents the influence of the energy
conversion and can be a strong driver of the nonlinear oscillation.

B. Reduction to a Two-Dimensional Wave Equation

Now, a 2-D model is developed by integrating Eq. (9) over the
primary flow direction, x3. Focus is made on the transverse-mode
instability, and so the major oscillations will be in the x1 and x2
directions. A cylindrical combustion chamber is considered with
the injector at x3 � 0 and the nozzle entrance at x3 � L. Variations of
the pressure, velocity, and other variables in the x3 direction will be
smaller than variations in other directions.

Define the 2-D average values: ~p � �1∕L�∫ L0p dx3, ~ρ �
�1∕L�∫ L0 ρ dx3, ~a � �1∕L�∫ L0a dx3, and ~u � �1∕L�∫ L0u dx3. Now,
Eq. (9) is integrated over x3, neglecting the difference between the
products of averages and the averages of products:

∂2 ~p
∂t2

− ~a2
∂2 ~p

∂xj∂xj
� ~a2

L

�
∂p
∂x3

����
L

−
∂p
∂x3

����
0

�
� ∂ ~ρ

∂t
∂ ~a2

∂t
� �γ − 1� ∂

~E

∂t

� ~a2
∂2� ~ρ ~uj ~ui�
∂xi∂xj

� ~a2

L

�
∂�ρuju3�

∂xj

����
L

−
∂�ρuju3�

∂xj

����
0

�
(10)

in which i � 1; 2; j � 1; 2.
Set to zero and ignore in Eq. (10) two terms that result from the

integration of the i � 3; j � 1; 2 portions of the last term in Eq. (9),
namely, the quantity

a2
1

L

∂�ρu3uj�
∂xj

(11)

evaluated at x � 0 and x � L. These terms relate to the transverse
gradient of the influx at the injector and efflux at the nozzle entrance
of the transverse momentum. Assume that the injected propellant
enters with no transverse momentum, and the multi-orifice nozzle
(discussed as follows) eliminates transverse momentum at its
entrance.
Note that, from the momentum equation (2)

∂p
∂x3
�

∂�ρuju3�
∂xj

� −
∂�ρu3�
∂t

(12)

which can be substituted into Eq. (10) to obtain

∂2 ~p
∂t2

− ~a2
∂2 ~p

∂xj∂xj
� ~a2

L

�
∂�ρu3�
∂t

����
0

−
∂�ρu3�
∂t

����
L

�
� ∂ ~ρ

∂t
∂ ~a2

∂t

� �γ − 1� ∂
~E

∂t
� ~a2

∂2� ~ρ ~ui ~uj�
∂xi∂xj

(13)

The time derivatives of ρu3 will be determined by the boundary
conditions at the injector and nozzle entrance.

C. Injector and Nozzle Boundary Conditions

The mass flux per unit area flowing from the injectors will be
considered to be a function of local pressure at the exit of the injector,
which is the injector face. Thus, ρu3j0 � g�p; x1; x2�, in which the
function g�p; x1; x2� can be determined by an analysis of the flow in
the orifice and upstream in the propellant feed system. For portions of
the injector face where no orifice hole exists, g � 0. Consequently

~a2

L

∂�ρu3�
∂t

����
0

� f�p; x1; x2�
∂p
∂t

(14)

with the definition f�p; x1; x2� � � ~a2∕L�∂g�p; x1; x2�∕∂p. The
pressure here is taken at x3 � 0. For the calculations in this paper,
oscillatory couplingwith the propellant feed systemwill be neglected
(i.e., ∂g∕∂p � 0 and f � 0).
A special nozzle configuration, which is achievable experimen-

tally, is assumed: a multi-orifice flow exit with each orifice in a
perforated plate in the exit plane being a small choked nozzle with a
length much shorter than the oscillation wavelength and a residence
time much shorter than the oscillation period. Then, the flow through
the nozzle is quasi-steady. This nozzle boundary condition for
nonlinear transverse waves was developed by Crocco and Sirignano
[7,59]. Consider the entrance Mach number of the nozzle to be
sufficiently low so that the entrance stagnation values and static
values can be assumed to be identical. Also, the boundary condition is
abbreviated, neglecting the higher-order effects of the transverse
velocity. From this well-known choked-nozzle relation

�ρu3�L �
Athroat

Aentrance

�
γ

R

�
1∕2�γ � 1

2

�− γ�1
2�γ−1� p

T1∕2 (15)

with p0 and T0 representing the steady-state values at the nozzle
entrance and taking isentropic fluctuations through the nozzle

�ρu3�L �
Athroat

Aentrance

�
γ

R

�
1∕2�γ � 1

2

�− γ�1
2�γ−1� p

γ−1
2γ

0

T
1∕2
0

p
γ�1
2γ � K̂p

γ�1
2γ (16)

and, using the preceding definition of K̂, one obtains

∂�ρu3�
∂t

����
L

� K̂ γ � 1

2γ

�
p

1−γ
2γ
∂p
∂t

�
L

� K
�
p

1−γ
2γ
∂p
∂t

�
L

(17)

Now, Eq. (13) may be rewritten

∂2 ~p
∂t2

− ~a2
∂2 ~p

∂xj∂xj
� −

~a2K

L

�
p

1−γ
2γ
∂p
∂t

�
L

� f�p; x1; x2�
∂p
∂t
� ∂ ~ρ

∂t
∂ ~a2

∂t

� �γ − 1� ∂
~E

∂t
� ~a2

∂2� ~ρ ~uj ~ui�
∂xi∂xj

(18)

The pressure variation in the x3 directionmay be assumed to beminor
for many transverse oscillations. The major variation of pressure will
be in the transverse direction, as indicated by experimental findings
[1] and theory [6,12]. For a pure transverse-wave behavior, there is no
acoustical oscillation in the x3 direction, and so only advection can be
expected to producevariations in that flowdirection. Thesevariations
tend to be slow exponential variations according to the theory. Then,
px3�0 � px3�L � ~p � p and the average designation (i.e., super-
script tilde) for pressure can be eliminated. The average designation is
also removed for other variables:

∂2p
∂t2
�
�
a2K

L
�p

1−γ
2γ � − f�p; x1; x2�

�
∂p
∂t

− a2
∂2p

∂xj∂xj

� ∂ρ
∂t

∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

(19)
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The nozzle boundary condition provides a first time-derivative term,
which is a damping function for the oscillation. Some of the energy in
the oscillation will be lost by nozzle outflow. The condition at the
injector face could be stabilizing or destabilizing, depending on the
function f�p; x1; x2� resulting from the analysis of the propellant
flow system. The termwith the time derivative of the energy sourceE
can be described as the forcing function for the oscillation. A
combustion model will be developed to relate that quantity E back to
pressure, temperature, and velocity. The other two nonlinear terms
on the right-hand side of the equation are not dissipative or forcing
functions, but they can have a strong influence on the stability,
amplitude, and wave shape for the oscillation.
Assume that the averaged pressure, temperature, density, and

sound speed will be related by polytropic relations. In this first devel-
opment, isentropic relations will be used to describe the thermo-
dynamic relations during the oscillation. For transverse oscillations
in a cylindrical chamber, shockwaves do not form. Also, the acoustic
wavelengths are sufficiently long that viscous and diffusive effects
are small, except for a combustion zone near an injector. These
isentropic relations can be used to eliminate density, sound speed, and
temperature from Eq. (19):

∂2p
∂t2
�
�
Ap

γ−1
2γ − f�p; x1; x2�

�
∂p
∂t

− Bp
γ−1
γ

∂2p
∂xj∂xj

� �γ − 1�
γ

1

p

�
∂p
∂t

�
2

� �γ − 1� ∂E
∂t
� γp

γ−1
γ
∂2�p1

γuiuj�
∂xi∂xj

(20)

in which it is defined that

A � a20K

Lp
γ−1
γ

0

; B � a20

p
γ−1
γ

0

(21)

If a polytropic relation other than the isentropic relation is desired, γ
may be replaced by a different constant in the preceding equations.
The neglect of entropy variations in the determination of the

pressure and velocity fields is not a very strong assumption. Three
arguments can be given. First, pressure is known to be the least
sensitive variable to entropy variations. Pressure change travels by
acoustic waves, whereas entropy change is carried kinematically by
material transport and/or diffused. For example, one cannot detect
well by pressure measurements the variation in entropy. Velocity is
somewhat more sensitive to entropy variations, but is still dominated
by acoustic influence in the combustion-instability case. Temperature
and density are more sensitive to entropy variations and kinematic
waves. Thus, neglect of entropywaves is not expected to have a direct
effect on the pressure waveform. Rather, a theory predicts an indirect
effect through interactions at the nozzle; the kinematic wave advects
toward the nozzle and causes the reflection of an acoustic wavewhen
it reaches the nozzle.
For subsonic flows in combustion chambers at mean velocities

with a low-Mach-number value compared to unity, the acoustic
wavelengths are at least one order of magnitude greater than the
kinematic wavelengths. Therefore, a second argument is that the
shorter kinematic wavelengths produce larger gradients, which
result in more susceptiblity to elimination by molecular mixing
and turbulent mixing. Surely, the entropy waves can form. Some
experimental measurement and verification of kinematic temperature
waves exist for combustion chambers with low frequency and
relatively low turbulence levels (e.g., solid-propellant T-burners
[60]). However, no experimental evidence is known indicating the
survival of entropy waves in high-frequency, high-Reynolds-number
configurations, such as liquid-propellant rocket motors. As the fre-
quency increases and the mean chamber velocity decreases, the
entropy (and, therefore, temperature) wavelength decreases. As the
turbulent kinetic energy increases with increasing Reynolds number,
the turbulent eddy diffusivity increases. The dissipation time for the
kinematic wave can be expected to be proportional to thewavelength
squared divided by the turbulent diffusivity, so that time decreases as

the frequency and eddy diffusivity increase, and the mean velocity
decreases. The travel time of the kinematic wave to the nozzle
entrance will increase as the mean velocity decreases. Estimates of
these times will show in many practical situations; it can be expected
that they will dissipate significantly before reaching the nozzle.
Third, even if mixing were not eliminating the kinematic waves, a

length-filtering (i.e., length-averaging) process on the equations to
calculate the longer wavelength pressure would remove them from
major impact on the pressure solution if the kinematic waves were
traveling in the same direction as the acoustic wave. In the present
case, with emphasis on transverse waves, the travel of the kinematic
waves will primarily be in the x3 direction, orthogonal to the acoustic
wave travel. Therefore, integration over the x3 direction reduces the
effect of those kinematic waves on the equations.

D. Velocity Determination

It remains to determine the averaged velocity by integrating Eq. (2)
to obtain the 2-D equation:

∂�ρui�
∂t
�

∂�ρujui�
∂xj

� ∂p
∂xi
� 0 (22)

in which i � 1; 2 and j � 1; 2. Clearly, the polytropic relations may
be used to relate density to pressure in this equation.
A continuity equation for the 2-D averaged variables is also

obtained:

∂ρ
∂t
�

∂�ρuj�
∂xj

� 0 (23)

By combination of Eqs. (22) and (23), one may write

∂ui
∂t
� uj

∂ui
∂xj
� C

p
1
γ

∂p
∂xi
� 0 (24)

in which

C � p
1
γ

0

ρ0
(25)

The second-order wave equation (20) for p is coupled with two first-
order partial differential equations (PDEs) (24) for u1 and u2. These
equations form themodel system for thewave dynamics. It remains to
discuss the relations between velocity and pressure, and between the
rate E and other thermodynamic variables and velocity.
Entropy and vorticity are related through the Crocco vorticity

theorem. Accordingly, the neglect of entropywaves implies a neglect
of vorticity waves. Therefore, a velocity potential function ϕmay be
established that has

∂ϕ
∂xi
� ui (26)

and, after a combination of Eqs. (22), (23), and (26), one may obtain

∂ϕ
∂t
� 1

2

∂ϕ
∂xj

∂ϕ
∂xj
�
Z

1

ρ
dp � constant (27)

The combination of Eqs. (19), (26), and (27) can lead to a third-order
wave equation governing ϕ. This alternative approach will not be
used here because it raises the order of the PDE for the wave
dynamics, although it eliminates the need to solve three equations.

E. Cylindrical Coordinates and Radial Boundary Condition

It is useful to recast Eq. (20) in cylindrical polar coordinates
because of the combustion-chamber shape. The variables r and θ
will represent the radial distance from the chamber centerline and
the azimuthal position, respectively. The velocity components are ur
and uθ:
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∂2p
∂t2
�
�
Ap

γ−1
2γ − f�p; x1; x2�

�
∂p
∂t

− Bp
γ−1
γ

�
∂2p
∂r2
� 1

r

∂p
∂r
� 1

r2
∂2p
∂θ2

�

� �γ − 1�
γ

1

p

�
∂p
∂t

�
2

� �γ − 1� ∂E
∂t
� γp

γ−1
γ

�
∂2�p1

γu2r�
∂r2

� 2

r

∂�p1
γu2r�
∂r

� 2

r

∂2�p1
γuruθ�

∂r∂θ
� 2

r2
∂�p1

γuruθ�
∂θ

� 1

r2
∂2�p1

γu2θ�
∂θ2

−
1

r

∂�p1
γu2θ�
∂r

�

(28)

One may now recast the momentum equation in cylindrical
coordinates to obtain

∂ur
∂t
� ur

∂ur
∂r
� uθ

1

r

∂ur
∂θ

−
u2θ
r
� C

p
1
γ

∂p
∂r
� 0 (29)

and

∂uθ
∂t
� ur

∂uθ
∂r
� uθ

1

r

∂uθ
∂θ
� uruθ

r
� C

rp
1
γ

∂p
∂θ
� 0 (30)

Consider a solid circular wall at radius r � R, that is, no acoustic
lining is present. The normal velocity at the wall will be zero, and
so the following boundary conditions apply to the system of
Eqs. (28–30):

ur�t; R; θ� � 0;
∂p
∂r
�t; R; θ� � p

1
γu2θ
CR

(31)

In the calculations, no acoustic coupling with the injection system
will be considered. Therefore, f � 0 in Eq. (28), and the mass flux at
the injector face is constant with time.
The wave dynamics will be studied first by imposing a postulated

monotonically increasing relation between the heat-release rateE and
the pressure p. However, focus will occur later on a model of coaxial
injection, turbulent mixing, and chemical reaction. This model will
be more realistic and will introduce physics and chemistry with
characteristic times that will not be short, compared to the period of
acoustic oscillation. Therefore, time delays will be introduced.

III. Determination of Heat-Release RateE with Coaxial
Injection

Amodel is required to relate E to velocity and pressure. The effect
is sought of the source term E on driving the acoustic oscillation. In
particular, the long wavelength impact of that forcing term must be
determined. That term represents the rate of conversion of chemical
energy to thermal energy, andwill create entropy.Under oscillation, it
will create kinematic entropy waves as well as directly modifying the
longer-wavelength acoustic oscillations. The model equation has
filtered those shorter-length kinematic waves.
The simplification of the constant cp value for the mixture will be

made, and h � cpT. Then, the energy equation becomes

ρ
∂T
∂t
� ρu · ∇T −

�
k

cp

�
∇2T −

1

cp

∂p
∂t
� ρ

_Q

cp
� ρ

Q

cp
ωF (32)

Approximating an isentropic relationship between pressure and
density, and defining κ � T∕To − �p∕po��γ−1�∕γ , we find

∂κ
∂t
� u · ∇κ −D∇2κ � Q

cpTo
ωF (33)

in which we take D to be both the thermal eddy diffusivity and the
mass eddy diffusivity. For the gas ambient to the mixing, reacting
stream, κ � 0. Some error is accepted when it is assumed that the
isentropic relation for density applies throughout the mixing region;
it is a good approximation for the ambient gas.
Consider now themass diffusion, advection, and chemical reaction

for each species. The species continuity equation for each species
may be written as follows:

∂Yi
∂t
� u · ∇Yi −D∇2Yi � ωi (34)

If a one-step chemical reaction with the same diffusivity for fuel and
oxygen is used, one can construct a Shvab–Zel’dovich variable
α � YF − νYO, in which ν is the fuel-to-oxygen-mass stoichiometric
ratio, and find

∂α
∂t
� u · ∇α −D∇2α � 0 (35)

Similarly, defining β � �Q∕�cpTo��YF − κ, it can be shown that

∂β
∂t
� u · ∇β −D∇2β � 0 (36)

For the gas ambient to the mixing, reacting stream, α � 0 and β � 0.
Consider now a coaxial injector with axisymmetric behavior,

in which the dependent variables are functions of t, x, and r.
The gaseous oxygen flows from an injector at x � 0 for 0 ≤ r ≤ Ri,
whereas methane flows through the injector at x � 0 for
Ri ≤ r ≤ Ro. An Oseen approximation will be made for the velocity
field with uniform velocity U�t� in the x direction. The velocities of
both streams are taken to be identical, although they differ in practice.
Diffusion in the streamwise direction will be neglected. The
diffusivity is approximated as a spatially uniform, temporal function
due to turbulence modulation. The estimate is based on the turbulent
viscosity approximation for a self-similar turbulent jet [61].

νT �
U0�x�r1∕2�x�

35
(37)

in which, in Eq. (37), U�t� is substituted for the centerline velocity
U0�x�, andRo is the jet’s half-width. Furthermore, the standard value
of 0.7 is used for the turbulent Prandtl number, which yields

D � U�t�Ro
24.5

(38)

The Oseen approximation, eddy-diffusivity approximation, and
boundary- or mixing-layer approximation used here are well
established in the literature. Variations in the velocity and turbulent
diffusivity and diffusion in the main flow direction will cause
quantitative corrections, but no qualitative corrections are expected.
The approximation implies that the ambient combustion-chamber
gas will recirculate and parallel the injected propellants at the same
velocity. Equations (35) and (36) become

∂α
∂t
�U�t� ∂α

∂x
−D

�
∂2α
∂r2
� 1

r

∂α
∂r

�
� 0 (39)

and

∂β
∂t
�U�t� ∂β

∂x
−D

�
∂2β
∂r2
� 1

r

∂β
∂r

�
� 0 (40)

In addition, we have

∂YF
∂t
�U�t� ∂YF

∂x
−D

�
∂2YF
∂r2
� 1

r

∂YF
∂r

�
� ωF (41)

The ambient boundary conditions are α�t; x;∞� � β�t; x;∞� �
YF�t; x;∞� � 0. Boundary conditions are needed at x � 0. Consider
that, for 0 ≤ r ≤ Ri, T�t; 0; r� � Ti�t�, YO�t; 0; r� � YO;i�t�,
YF�t; 0; r� � 0, κ�t; 0; r� � Ti∕To − �p∕po��γ−1�∕γ , α�t; 0; r� �
−νYO;i�t� ≡ f�t�, β�t; 0; r� � �p∕po��γ−1�∕γ − Ti∕To ≡ g�t�. For
Ri ≤ r ≤ Ro, T�t; 0; r� � Ti�t�, YO�t; 0; r� � 0, YF�t; 0; r� �
YF;o�t�, κ � Ti∕To − �p∕po��γ−1�∕γ , α�t; 0; r� � YF;o, and
β � �Q∕�cpTo��YF;o � �p∕po��γ−1�∕γ − Ti∕To. For r ≥ Ro,
YO�t; 0; r� � YF�t; 0; r� � 0, κ�t; 0; R� � 0, α�t; 0; r� � 0, and
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β�t; 0; r� � 0, in which p�t; 0; r� and T�t; 0; r� have the ambient
values.
The scaling still has the pressure wavelength much larger than the

domain under study here; the acoustic wavelength isO�100 cm� near
the wall, whereas the diffusion layers are of O�1 cm�, and the
reaction zones are even smaller. Thus, the pressuremay be considered
uniform (over the domain of an individual injector, but varying from
one injector to another), although mass fractions and temperature
will vary spatially and temporally due to the combined effects of heat
and mass diffusion, convection or advection, and compression or
expansion. The time for an acoustic wave to propagate through a
single-injector region is smaller than or comparable to the time
for diffusion and reaction in that region. The wave-speed order of
magnitude is 102–103 m∕s over a centimeter or so in transverse
dimension for a time between O�10−5 s� and O�10−4 s�; the
combustion times are about 10−4 s. Therefore, the time variation of
pressure is important for the combustion dynamics.
Equations (39–41) have the same linear differential operator with

the first two equations being homogeneous. Physically, diffusion is
occurring in individual axisymmetric planes that are advecting at
velocity U�t� in the x direction. Visualize a continual set of planes
perpendicular to the x direction, which advect downstream from the
injector face with a temporal diffusion within each of these planes.
Thus, one may convert the two first-derivative terms into a
Lagrangian time-derivative term. That is, define ~t � t − τ �
∫ dx∕U, in which τ is the time when mass in the particular plane was
injected. Then, the equations become

∂α
∂~t

−D
�
∂2α
∂r2
� 1

r

∂α
∂r

�
� 0 (42)

∂β
∂~t

−D
�
∂2β
∂r2
� 1

r

∂β
∂r

�
� 0 (43)

and

∂YF
∂~t

−D
�
∂2YF
∂r2
� 1

r

∂YF
∂r

�
� ωF (44)

The boundary conditions at x � 0 can now be converted to initial
conditions. That is, the boundary values at the instant when the
element of mass was injected are the initial conditions for the
diffusion plane to be solved for each of the planes (perpendicular to
the x direction), which continually emerge from the injector face and
advect downstream.
The standard Green’s function may be used to solve this problem:

G�r; ~t; ξ; t 0� � 1

4πD�~t − t 0� exp
�
−
�r − ξ�2
4D�~t − t 0�

�
(45)

The solutions to Eqs. (42) and (43) may be written as

α�~t; r� � 2π

Z
∞

0

G�r; ~t; ξ; 0�α�0; ξ�ξ dξ (46)

and

β�~t; r� � 2π

Z
∞

0

G�r; ~t; ξ; 0�β�0; ξ�ξ dξ (47)

Equation (44) is coupled to the equations for α and β through the
reaction rate ωF, but only in one direction, and so it can be solved
sequentially. For convenience, a linear dependence of the reaction
rate on the concentration of each reactant is chosen. That is, the
potential numerical problems with the negative mass-fraction
exponent of the Westbrook–Dryer kinetics [62] is avoided. In
particular, the one-step reaction rate is given by

ωF � AρYOYFe
−∕RuT

� Apo
νRTo

p

po

YF�YF − α�
�Q∕cpTo�YF − β� �p∕po��γ−1�∕γ

× exp

�
ϵ∕RuTo

�Q∕cpTo�YF − β� �p∕po��γ−1�∕γ
�

(48)

in which A is the preexponential constant, and ϵ is the activation
energy. This equation is nonlinear inYF, and so numerical integration
will be used.
These equations contain two characteristic times: one for mixing

and another for chemical reaction. These characteristic times will
result in a time lag for the response of heat release to the pressure
oscillation. Methane and gaseous-oxygen propellants were chosen
with a fuel-to-oxygen-mass mixture ratio equal to 1∕4 and an initial
injection temperature Ti � 400 K. The chemical-kinetic constants
are A � 2 × 108 m3∕kg · s and ϵ � 1.25 × 108 J∕kg · mol. The
appropriate preexponential constant was inferred by matching the
law of Eq. (48) to theWestbrook–Dryer law at high-density and low-
mass-fraction values characteristic of a diffusion flame.
The reaction characteristic time is defined by the formula

τR � 1∕ωF (49)

Here, to obtain the parameter value for τR, ωF is evaluated for a
stoichiometric mixture of the reactants at p � 200 atm and
T � 2000 K. For the present choice of constants, we have
τR � 1.63 × 10−4 s. The mixing characteristic time is defined by the
formula

τM � �Ro − Ri�2∕D (50)

which, for the definition of D given in Eq. (38), yields a value of
τM � 4.55 × 10−4 s. Note that the values τM and τR are used to
characterize the calculation, but do not appear in the calculation
process. Furthermore, the mean chamber-temperature value is
roughly halfway between the injected-propellant temperature and the
chemical-equilibrium flame temperature.

IV. Numerical Integration

The evolution equations for p, ur, uθ, Eqs. (28–30), are solved
using a second-order finite difference procedure on a uniform polar
grid, with the velocity fields being staggeredwith respect to the scalar
fields. Specifically, the superscripts i, j, and k denote, respectively,
the radial position, azimuthal position, and time, and Δr, Δθ, and
Δt denote, respectively, the radial and azimuthal grid spacings, and
the time step. Also, pi;j;k denotes the pressure at r � �i − 0.5�Δr,
θ � �j − 0.5�Δθ, t � kΔt. Additionally, ui;j;kr represents the radial
velocity at r � iΔr, θ � �j − 0.5�Δθ, t � kΔt, and ui;j;kθ represents
the azimuthal velocity at r � �i − 0.5�Δr, θ � jΔθ, t � kΔt.
The evolution equation for YF, Eq. (30), is solved on multiple

nonoverlapping grids, one for each injector, and aligned with that
injector’s axis, which are 2-D in the r, x coordinates, with θ variation
assumed to be negligible due to the injector’s small radius relative to
the chamber’s radius. Then, for the lth injector grid, rgl, xgl denote,
respectively, the grid’s local radial and axial coordinates, and Δrgl,
Δxgl are used to denote the radial and axial grid spacings. Yi;j;kF;l

denotes the value of YF at rgl � �i − 0.5�Δrgl, xgl � �j − 0.5�Δxgl,
t � kΔt.
At time step k, the values of pi;j;k−2, pi;j;k−1, ui;j;k−1r , ui;j;k−1θ ,

Yi;j;k−1F are known, and pi;j;k, ui;j;kr , ui;j;kθ , Yi;j;kF are calculated. To this
end, Eqs. (28–30) and (41) are discretized using the second-order
finite differences in space and time. For Eq. (28), the time
discretization is centered on t � �k − 1�Δt, so that the first-order
time derivatives take the form ∂p∕∂tji;j;k−1 ≈ �pi;j;k − pi;j;k−2�∕
�2Δt�, the second-order derivatives take the form ∂2p∕∂t2ji;j;k−1≈
�pi;j;k − 2pi;j;k−1 � pi;j;k−2�∕Δt2, and pi;j;k−1 is used, in which p is
not differentiated in time.
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On the other hand, the time discretizations for Eqs. (29), (30), and
(41) are standard Crank–Nicolson, centered on t � �k − 0.5�Δt,
so that, for example, the first-order time derivative for ur takes the
form ∂ur∕∂tji;j;k−1∕2 ≈ �ui;j;kr − ui;j;k−1r �∕Δt, and the terms that are
not differentiated with respect to time take the form urji;j;k−1∕2≈
�ui;j;kr � ui;j;k−1r �∕2. This can be recognized as the Crank–Nicolson
scheme, with the exception that, for the convective derivatives in
Eqs. (29) and (30), the second-order upwind scheme is used for the
spatial derivatives ofur,uθ instead of the standard central differences.
The time discretization of Eqs. (29), (30), and (41) leads to an

overall implicit discretization, which is solved by the following
iterative procedure:
1) Extrapolate pi;j;k, ui;j;kr , ui;j;kθ , Yi;j;kF from their values at the time

levels k − 1 and k − 2.
2) Solve for pi;j;k from the discretized pressure-wave equation.
3) Perform an explicit iteration (i.e., use the previous values of

ui;j;kr , ui;j;kθ for the spatial derivatives) on the values of ui;j;kr , ui;j;kθ in
the discretized momentum equations.
4) Perform an explicit iteration on the values of Yi;j;kF;l in the

discretized form of Eq. (41).
5) If the requisite number of iterations has been achieved, proceed

to the next step. Otherwise, go back to step 3.
If at least two iterations are used, this time-stepping procedure is

second-order accurate.
To achieve stability of the numerical procedure in the limit as

Δr ↓ 0, in which Δθ and Δt are proportional to Δr, the one-
dimensional discrete Fourier transform of pi;j;k, ui;j;kr , ui;j;kθ is made,
and all components with a wavelength lower than Δr (i.e., the high-
frequency components close to the origin) are filtered out. This
filtering does not diminish the accuracy of the code, and keeps it
stable for Δt proportional to Δr, despite the fact that the Courant
number in the azimuthal direction, C � UΔt∕rΔθ, may be much
greater than 1 close to the centerline. In the absence of filtering, the
Courant criterion C � UΔt∕rΔθ ≤ 1 will have to be satisfied
everywhere in the domain, requiring that Δt scale as �Δr�2.

V. Results

Several types of calculations have beenmade andwill be presented
here. First, a convenient, monotonically increasing relation between
E and p is chosen, and the wave dynamics are analyzed. Then, the
coaxial-injector model was used to study the response of the mixing
and combustion process to an imposed, defined pressure oscillation.
Finally, the coaxial-injector model and the combustion-chamber
wave-dynamicsmodelwere coupled for a 10-injector design. Each of
these three analyses will be discussed in the following subsections.
The ratio of the specific heats γ � 1.30 has been chosen for the

calculations. A chamber diameter of 0.28 m and a chamber length of
0.5 m with mean initial pressure and temperature of 200 atm and
2000K, respectively, were considered. For the cases studied with full
combustion chamber, the mass flow of the propellants at the injector
and, in the steady state, at the nozzle is 121 kg∕s. In the single-
injector study, one-tenth of that value is used. For the full chamber,
the ratio for the sum of the cross-sectional areas of the quasi-steady
nozzle throats to the cross-sectional area of the cylindrical
combustion chamber is 0.115. Consequently, with the chamber-gas
temperature at 2000 K in the steady state, the mean-flow Mach
number in the chamber is 0.66.

A. Chamber Acoustic Oscillations with Prescribed E�p�

The function E − Eo � Kpo�p̂4 − 0.467p̂3 � 0.03p̂2�
0.00008p̂�, in which K � 1.25 × 106 s−1 and p̂ � �p − po�∕po,
was chosen. In this study of wave dynamics without coupling to
detailed combustion dynamics, no time lags were present, and the
same function E�p� was used at all r, θ positions. Later, the detailed
combustion dynamics, with time lag and concentration of
combustion in the vicinities of injected-propellant streams, will be
considered.
Initial conditions were prescribed for pressure and velocity

components that matched the traveling first tangential mode. The
initial condition involves a steady flow with the superimposed

perturbation, and so there is no difference between a disturbance set
as an initial condition and one set at a later time to a steady flow. A
number of calculations were performed that had varying initial
pressure and velocity amplitudes. For a sufficiently large initial
amplitude, an oscillatory limit cycle resulted. Figure 3 presents the
results for initial amplitudes. The open dots show the initial
amplitude, whereas the filled dots show the amplitude after a long
time. Below the initial amplitude Δp0 � 54 atm, the perturbation
decays, and above that value, it grows to a limit cycle of
magnitude ΔpF � 213 atm.
For a low initial amplitude, decay occurs with time, indicating a

spontaneous or linear stability. Above the threshold value of 54 atm
for the initial pressure amplitude, the oscillation grows to a stable
limit cycle with a peak-to-peak amplitude of 213 atm, as shown in
Fig. 4. This threshold value indicates that there is an unstable limit
cycle at that amplitude value. Therefore, the possibility of nonlinear
triggering is demonstrated here. If the initial profile has a larger
amplitude than this stable limit cycle, it decays with time to the limit-
cycle value. A considerable deviation from a sinusoidal profile can be
observed in the limit cycle.
The determination of growth vs decay comes from the balance of

two temporal first-derivative terms in Eq. (28): themiddle term on the
left side of the equality, representing nozzle damping and propellant-
injection-system coupling, and the second term on the right side,
representing combustion coupling (i.e., energy addition). In the
calculations of this paper, propellant coupling is not considered (i.e.,
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f � 0). The nozzle effects, for a quasi-steady short-nozzle case, are
always damping. The combustion effects will depend on the time lag,
and can be amplifying or damping. In the case of triggering, upon
integration over a time period of the oscillation, the amplifying
combustion effects exceed in magnitude the nozzle damping if a
certain amplitude is exceeded by the initiating disturbance. Thereby,
the growth of the amplitude with time occurs until a stable limit
is reached. Below that critical amplitude, the nozzle damping
dominates in magnitude and the amplitude decays with time until it
reaches, after a long (theoretically infinite) time, zero value. The
critical amplitude marks the unstable limit cycle. A higher critical
amplitude identifies the stable limit cycle. For an initiating amplitude
between the two limit-cycle values, growth occurs because com-
bustion dominates. Above the stable limit-cycle amplitude, the
nozzle damping again dominates and temporal decay of amplitude
would occur, until the oscillation reaches the stable limit.
Figure 5 shows the instantaneous pressure contours for four cases

of various initial amplitudes. Thewave remains in the general form of
a first tangential mode whether growth or decay occurs. The solution
with Δp0 � 5 atm decays; that solution with Δp0 � 54 atm stays
approximately the same, and for higher values of Δp0, the solutions
converge to the same limit cycle. Video clips of the pressure wave
motion can be found at http://sites.uci.edu/afosrproject/ [63].

B. Sensitivity of Heat Release to Pressure Oscillation

The turbulent mixing and chemical reaction associated with an
individual injector were analyzed to determine the heat-release rate
per unit volumeE as a function of the oscillating pressure. The radius
of the outer injector is 1.1 cm, and that of the inner one is 0.898 cm.
The methane flows in the annular region with the oxygen flowing
through the interior pipe. The fuel and oxidizer leave the injectors
with a temperature of 400K and an axial velocity of 200 m∕s. Before
the pressure oscillations were imposed, the steady-state behavior was
analyzed. The resulting average temperature over the mixing,
reacting axisymmetric stream at a constant pressure of 200 atm was
determined, upon spatial integration, to be 2000 K. In particular, as a
matter of convenience, the inlet temperature was adjusted to give that
average value to be the same as the imposed ambient value. Thereby,
the average temperature over the mixing and flame zone would also
be the average for the full chamber. This value is roughly half of the
chemical-equilibrium value. The steady-state temperature contours
are shown in Fig. 6. It is seen that a diffusion-flame character exists.
Comparisons were made with a steady-state case, in which the
Westbrook–Dryer kinetics [62] with nonunity mass-fraction expo-
nents were used. There is no substantial difference in the flame
behavior.
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Fig. 8 In-phase, single-injector heat release vs normalized mixing and
chemical times.
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For the results of an uncoupled single injector portrayed in
Figs. 7–9, ωF was integrated from Eq. (48) over the 3-D
(axisymmetric) volume, multiplied by Q (energy per unit mass of
fuel), and then divided by the samevolume overwhich the integration
occurred. Therefore, essentially, E instantaneously equals the
product ofQ and the spatial average ofωF. Here,E is only a function
of time.
Two time ratios are key parameters; they are given as the product of

frequency f with the characteristic mixing time τM, and the product
of frequency f with the characteristic chemical-reaction time τR.
Figure 7 shows one case in which the response of the heat-release rate
is sensitive to pressure; a pressure oscillation with the amplitude
equal to 10% of the steady-state pressure yields an oscillation in E
with an amplitude equal to 25%or so of the steady-state value. A time
lag is also found in the heat-release-rate oscillation as expected.
In Fig. 8, the results are given of a survey of the amplitude ofE for a

given p amplitude as a function of the two ratios, fτM and fτR. The
3-D plot shows a peak in a certain region of the parameter space; in
particular, the peak domain occurs where both time ratios have
magnitudes of order unity. Figure 9 uses contour plots to give the
same information as Fig. 8. Now, for the particular choices of
propellants (methane and gaseous oxygen) and steady-state
operating conditions, the parameters τM and τR are prescribed, and
so, as frequency is varied, the operating state must lie on a straight
line in Fig. 9. It is seen that the straight line indicating the operation
path passes through the most sensitive region. The lower solid black
line represents the domain of fτM and fτR for the present choice
of mixing and chemical parameters. That straight line has the
operational path passing through the most sensitive region. The
symbols tagged to the line, together with the upper line, will be
discussed in the next subsection.

C. Wave Dynamics with Combustion for the 10-Injector Design

As the next step, the wave dynamics and the combustion process
are coupled. The two characteristic times, τM and τR, will now affect
the feedback of energy from the combustion process to the chamber
acoustic oscillation. Also, the combustion and energy feedback will
be in certain locations near the injectors.
Ten injectors were considered, as shown in Fig. 10. Six coaxial

injectors were placed every π∕3 rad at r � �3∕4�R, three injectors
were placed every 2π∕3 rad at r � �1∕2�R, and one injector was
placed at the center. The steady-state pressure and temperature were
200 atm and 2000 K, respectively.E is no longer a simple function of

p; rather, it is now a functional dependent on the solution to a set of
coupled partial differential equations. Also, the relation is not
uniform over the space because the coaxial jets of the 10 injectors do
not overlap and the flames where energy is converted do not fill the
jets. Using color contours, the figure shows the highly nonuniform
magnitude of the energy-release rate E for a steady-state operation.
For the coupled chamber/10-injector analysis, E � E�t; r; θ� is

required; ωF was taken for each injector as a function of time,
downstreamdistance, and radial distance from the injector centerline;
integrated over the axial distance; and divided by the chamber length
to get an average over the chamber length. The injector-related
position was converted to a chamber radius and an azimuthal-angle
position; then, the results from 10 injectors were superimposed to get
E at each point in 2-D space and time.
A first tangential mode was imposed as the initial condition. For a

small initial amplitude, the oscillation decayed, whereas for initial
amplitudes larger than approximately 20 atm, the triggering threshold
of an unstable limit cyclewas exceeded, and the oscillation amplitude
grew toward the value for the stable limit cycle. The limit-cycle
behavior was not precisely periodic, as shown by the frequency
analysis in Fig. 11. The frequencies 2222, 3703, and 1612 Hz
correspond, respectively, to the first tangential, second tangential,
and subharmonic frequencies. The first tangential frequency is the
largest, and so it is the dominant mode, but nonlinear resonance has
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Fig. 10 Ten-coaxial-injector setup. Steady-state heat-release-rate
contours.
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caused two other modes to appear. The second tangential mode
appears at a higher frequency, and a subharmonic appears with a
frequency approximately equal to the difference between the
frequencies of the first tangential mode and the second tangential
mode. The potential appearances of such subharmonic modes have
been recognized in nonlinear dynamics [64]. The amplitudes for
harmonics of the tangential modes are not large, and so the energy

from the first tangential mode is being transferred in the nonlinear
resonance primarily to the second tangential mode and the
subharmonic mode. The tags on the lower line of Fig. 9 indicate the
frequencies of the components that appear for the nonlinear
resonance. Clearly, the second-tangential-frequency point is located
where E is very sensitive.
Figure 12 shows the growth of a typical triggered oscillation with a

considerable deviation from a sinusoidal profile in the limit cycle.
Figure 13 shows the pressure amplitude after a long time vs the initial
pressure amplitude. Below Δp0 � 20 atm, the perturbation decays,
and above that value, it grows to a limit cycle of magnitude
ΔpF � 155 atm. In Fig. 14, the spatial pressure-amplitude contours
are shown after the initial time for a decaying oscillation and for a
growing or triggered oscillation. The contour for the triggered
oscillation shows deviation from a pure first tangential. See the
pressure wave motion at http://sites.uci.edu/afosrproject/ [63].
The frequencies of the first and second tangentialmodes, and of the

subharmonic mode can be seen from Fig. 9 to lie in a sensitive region
for the E response to pressure oscillation.
A calculation was made with only the second tangential mode

appearing in the initial condition. For a sufficiently large initial
disturbance, it grew in amplitude without exciting the first tangential
mode or a subharmonic mode. Contour plots of a decaying second
tangential solution and one that has converged to the limit cycle
can be seen in Fig. 15. Video clips of the wave motion are presented
at http://sites.uci.edu/afosrproject/ [63]. Figure 16 shows that,
above the critical initial amplitude of Δp0 � 30 atm, the amplitude
grows to a limit cycle of magnitude ΔpF � 128 atm. Below
Δp0 � 30 atm, the perturbation decays.
In Fig. 17, the pressure and energy-release-rate contours can be

seen at the same instant of time for the same second-tangential-mode
limit cycle. The magnitudes of both p and E are highly nonuniform,
the large values of E are confined to the neighborhood of the injector
streams, and there is a time lag in the response of E variations to p
variations. In the figures at this same instant of time, the time lag for
the traveling wave creates a lag in the θ variable.
In addition to the excitation of the second tangential mode, the

fourth tangential mode and the second harmonic of the second
tangential mode were excited in this solution, as shown in Fig. 18.
For the first tangential mode, further analysis was made by

changing the characteristic time τR so that the second tangentialmode
was not in the sensitive region. In that case, the upper line in Fig. 9
describes the operational path. Then, as can be seen in Fig. 18, the
first tangential mode and its second and third harmonics appeared
without the second tangential mode or a subharmonicmode. The tags
on the upper line of Fig. 9 indicate the frequencies of the components
that appeared for the nonlinear resonance.
Note that Jacob et al. [19], using a Galerkin method, detected that

the nonlinear resonance for a first tangential mode included the
development of a second tangential mode. However, they did not
allow for the appearance of a subharmonic mode.
Finally, simulations were run with a different initial condition,

namely, a Gaussian pulse of half-width 2.5 cm and a peak magnitude
Δp0 � 40 atm, whose initial direction of travel (at the speed of
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Fig. 13 Final peak-to-peak pressure amplitude vs initial pressure
amplitude. Ten-injector setup.
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sound) is at an angle θ from the tangent to the chamber wall. See
Fig. 19. We show here that the initial perturbation need not be a
resonant mode. Of course, any perturbation will have an
eigenfunction expansion that includes an infinite number of resonant
modes. The initial condition involves a steady flow with the
perturbation, and so, again, there is no difference between a

disturbance set as an initial condition and one set at a later time to a
steady flow. The Gaussian disturbance might be caused by a
malfunction in the propellant injection, the combustion processes, or
the nozzle outflow. We need not be more specific to observe the
consequences here.
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Fig. 17 Limit cycle pressure and heat-release contours. Second tangential mode initial condition.
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Figure 20 plots the final amplitudesΔpF as a function of the angle
θ, which varies from 0 to 90 deg from the tangent, the latter value
meaning that the pulse is initially moving toward the center of the
chamber. As can be seen in Fig. 20, the solution decays for
θ < 10 deg, grows to the previously encountered limit cycle at
ΔpF � 155 atm for 10 deg ≤ θ ≤ 43 deg, and grows to a limit
cycle with a higher amplitude of ΔpF � 185 atm for θ > 43 deg.
This higher-amplitude limit cycle is achieved because the first radial
mode, with a frequency of 4450 Hz and a higher pressure fluctuation
at the location of the interior injectors, is excited (see Fig. 16) and
superimposed on the tangential modes, due to the fact that the
Gaussian pulse causes high pressure fluctuations at the location of the
inner injectors. A video of the wave motion may be found at http://
sites.uci.edu/afosrproject/ [63].
The mean pressure changed from 200 atm due to the instability.

For the triggered first tangential limit cycle, the presence of the
subharmonic mode caused a temporal wobble in the spatially mean
limit-cycle pressure, which varied within the limits of from 210.5 to
219.4 atm. The triggered second tangential limit cycle achieved a
mean level of 206 atm.These newvalues for the spatialmean pressure
are expected occurrences in nonlinear resonance that have been
predicted by the perturbation theory [64].
In this study, the focus is on the triggered instability, and therefore,

operational parameter values have been taken, in which the behavior
has linear stability with nonlinear unstable and stable limit cycles.
However, a few other cases were examined to demonstrate the
robustness of the models. Calculations with substantial changes in
the mixture ratio from the stoichiometric value to either fuel-rich or
fuel-lean situations have produced operations that are linearly stable,
but have no unstable and stable limit cycles, and so triggering is not
possible at those far-off stoichiometric-mixture ratios. These mixture
ratios were modified by varying the radius of the inner channel of the
coaxial injector to 0.500 cm for the fuel-rich case, and 1.03 cm for the

fuel-lean case. Accordingly, the mean temperature dropped to 1672
and 1851 K, respectively. To maintain the mean pressure at 200 atm,
the nozzle-throat-area ratios were changed to 0.076 and 0.124.
Another stoichiometric case with increased mass flow and larger
throat area produced linearly unstable behavior. Here, the injector
areas were doubled and the injection velocity was increased by a

���
2
p

factor; the area ratio became 0.762. The resulting stable limit-cycle
amplitude was 178 atm.

VI. Conclusions

It has been shown that nonlinear transverse-mode combustion
instability in a liquid-propellant rocket motor operating at very high
chamber pressure can be studied using a two-dimensional (2-D)
model with the radius and azimuthal angle in a circular cylindrical
chamber being the critical spatial dimensions. The original three-
dimensional equations can be integrated over the axial direction to
reduce the dimensionality; variations in that direction are considered
to be small. Nonlinear oscillations in the circular cylindrical
combustion chamber are allowed with the primary flow direction in
the axial direction and the primary wave travel in the transverse
directions.
In the first analysis, a monotonically increasing function of

pressurewas prescribed for the energy-release rate per unit volumeE.
The function applied uniformly over the 2-D space. Initial conditions
were prescribed for the pressure and velocity components that
matched the traveling first tangential mode. A number of calculations
were performed that had varying initial pressure and velocity
amplitudes. For a sufficiently large initial amplitude, an oscillatory
limit cycle resulted. For a low initial amplitude, decay occurs with
time, indicating a spontaneous or linear stability. Above the threshold
value of 54 atm for the initial pressure amplitude, the oscillation
grows to a stable limit cycle with a peak-to-peak amplitude of
213 atm, indicating an unstable limit cycle at that amplitude.
Therefore, the possibility of nonlinear triggering is demonstrated
here. If the initial profile has a larger amplitude than this stable limit
cycle, it decays with time to the limit-cycle value. The wave remains
in the general form of a first tangential modewhether growth or decay
occurs.
A model for turbulent mixing and one-step chemical reaction of

methane and gaseous oxygen with coaxial injection has been
developed.The analysis of the combustion process associatedwith an
individual injector with an imposed and prescribed pressure
oscillation shows that the combustion process has two characteristic
times, one for the mixing rate and the other for the chemical-kinetic
rate, producing a time lag in the energy-release rate relative to the
pressure oscillation. Sensitivity of the amplitude of the energy-
release rate to a given pressure amplitude is shown to be largest when
the double products of the frequency of oscillation with the
characteristic time are of order unity for both τR and τM.
The coupled combustion process and wave dynamics are

calculated for a 10-injector chamber with methane and gaseous
oxygen as propellants. Initial conditions with the spatial variation of
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Fig. 20 Final peak-to-peak amplitude vs angle of initial travel.

x (m)

y 
(m

)

−0.1 0 0.1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

200

205

210

215

220

225

230

235

x (m)

y 
(m

)

−0.1 0 0.1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−15

−10

−5

0

5

θ

Fig. 19 Initial Gaussian-pressure-pulse simulation can produce radial-mode oscillation.

2932 SIRIGNANO AND POPOV

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 I

R
V

IN
E

 o
n 

A
ug

us
t 2

8,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

25
12

 

http://sites.uci.edu/afosrproject/
http://sites.uci.edu/afosrproject/
http://sites.uci.edu/afosrproject/
http://sites.uci.edu/afosrproject/


the first tangential mode are imposed. Above a certain amplitude for
the initial conditions, the amplitude grows; otherwise, it decays with
time. Thus, nonlinear triggering is found. Previous predictions of
nonlinear triggering involved the use of the sensitive time-lag theory
or a comparable heuristicmodel of the combustion process; this is the
first case in which a first-principles combustion analysis yields the
triggering prediction.
The second tangential mode develops from the triggering action

of the first tangential mode as well. Furthermore, the nonlinear
resonance creates a subharmonic mode with a frequency equal to the
difference between the two frequencies for these active tangential
modes. In this case, the energy from the first tangential mode is
primarily transferred to the second tangential mode and the
subharmonic mode, with little energy passed to the harmonics of the
first tangential mode. Modification of the characteristic combustion
times can lead to a triggered instability, in which the triggered first
tangential mode transfers energy to its harmonics without the
appearance of the second tangential mode or the subharmonic mode.
The implication for the use of the Galerkin method (or comparable
reduced-basis approaches) is that important errors can occur if the
chosen basis functions do not include several natural modes, their
harmonics, and certain subharmonics.
The first-tangential-mode instability can also be triggered by local

pulses of pressure and velocity with strong sensitivity to the direction
of the pulse. For a pulse originating near the outer wall, the likelihood
of a triggered instability is increased as the radial component of the
pulse direction increases, that is, a tangential mode is triggered at
some threshold value of the angle between the direction of the pulse
and the tangential direction. Above a larger threshold value of the
angle, both a large radial mode and a tangential mode are initiated.
In this analysis, an important extension has been made beyond

previous approaches, which used heuristic or empirical (e.g., two-
parameter) theories to represent the combustion process. Here, a first-
principles combustion analysis has been used to study the nonlinear
triggering of the transverse-mode liquid-propellant-rocket-engine
(LPRE) instability. The method allows the prediction of the unstable
limit cycle, stable limit cycle, and the transient behavior in the
parameter domains where nonlinear triggering is possible. Unlike
the perturbationmethods andGalerkinmethods, prior selection of the
modes to be analyzed is not required; disturbances with profiles
differing from the natural modes can be studied, as the trigger and the
consequential unstable modes can be determined.
The streams from the various injectors have been examined,

allowing for their partial autonomy, but they have been networked
through thewave dynamics. Thereby, a foundation has been provided
for a more thorough analysis of the LPRE combustion instability as a
stochastic phenomenon in a complex system.
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