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A framework is established for optimal control of continuous combustors using the sequential linear
quadratic algorithm. An analysis is presented for liquid-fuel vaporization and burning in a continuous com-
bustor with secondary-air addition at downstream locations. A steady one-dimensional flow is portrayed and a
system of nonlinear ordinary differential equations is established. Three combustion models are presented with
different rate-controlling processes: vaporization, vaporization-mixing, and vaporization-mixing-reaction. The
models have a sufficient number of characteristic times and sufficient nonlinearity to provide a challenge to an
optimization procedure. The proposed method yields an optimal distribution of secondary-air addition.

Nomenclature

A* = cross-sectional area, .01 m?
) = specific heat of air, 1.3 x 10* J/(kg - K)
Cy, = specific heat of liquid, 2.21 x 10 J/(kg - K)
La* = latent heat of vaporization, 2.63 x 10° J/kg
L* = length of combustion chamber, 4 m
La = nondimensional latent heat of vaporization
ny = mass flow rate of fuel, kg/s
g = inlet air mass flow rate, kg/s
iy = total added air mass flow rate, kg/s
4 = pressure, 15 atm
or = heating value of decane, 44.24 x 10° J/kg
R = nondimensional radius of droplet
Re = droplet Reynolds number
R, gas constant for air, 287.03 J/ (kg - K)

ecane = gas constant for decane, 58.549 J/(kg - K)
T, = initial gas temperature, 900 K
T, = nondimensional boiling point of decane
T, = nondimensional gas temperature
T, = nondimensional liquid temperature
178 = nondimensional gas velocity
u = nondimensional liquid velocity
Yr = fuel mass fraction
Yo = air mass fraction
v = stoichiometric mass ratio of fuel to air, 0.0679
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J7%8 = dynamic viscosity of air, 5 x 107> kg/(m - s)
Py = nondimensional gas density
01 = nondimensional liquid density

I. Introduction

HE goal is to develop an approach that can be used for optimal

control of a continuous spray combustor. Three simple models
of spray combustion are constructed to explore the development
of this formal optimization analysis. The focus is on the optimal
control and not on the advancement of descriptive physical models.
More sophisticated analyses of turbulent spray combustion can
be easily found in the literature. For an overview, see Sirignano [1].
Nevertheless, the models used here have many characteristic times
implying a certain robustness. Although these models will not
describe all details of the spray combustion, they might adequately
identify how to control the major input parameters in an optimal
manner. And so, in this first effort, we begin with the simplest
combustion models that we find to be physically reasonable in its
global features.

Liquid fuel is injected at the upstream end of the combustor
together with some air. The ratio of fuel to air is chosen to allow
ignition and a stable flame. Additional air is added at downstream
locations to keep the gas temperature at or below allowable levels.
The system of two-phase flow equations for spray combustion [1]
is simplified. Steady state is assumed. Averaging over the transverse
dimensions reduces the system to a 1-D behavior, producing a
system of ordinary differential equations. Heat and mass diffusion
in the streamwise direction are neglected. The fuel is considered
to have only one component rather than being a blend. An average
droplet size is used in the model so that the size distribution of a
practical spray is not portrayed. The mass flow rate for air addition
is represented as a continuous function of downstream position.
The goal is to vaporize and burn fully the fuel in the combustor
chamber over the length. And so, we want to drive both the droplet
radius and the fuel mass fraction to zero at the end of the com-
bustor. Although total air addition is specified, the distribution
of air addition is a control variable. Other variables, such as
the initial average droplet radius, can also be a control variable. It is
also desired to make the length of the combustor as short as
possible, still maintaining the constraints and goal of complete
combustion.
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We considered three models of varying complexity for the
combustion processes. In order of increasing complexity, the first
(vaporization) model approximated vaporization as the dominant
process for combustion, with the mixing of fuel vapor and air, as
well as the chemical reaction between fuel vapor and air, taken
as instantaneous following vaporization; in the second (vapor-
ization-mixing) model we allow a finite time for the turbulent
mixing as well as for vaporization; and in the third (vaporization-
mixing-reaction) model all three processes, including now the
chemical-reaction, will take a finite time to complete.

We focus on the optimal control problem of choosing the best
profile (i.e., function) for the mass flow rate for air addition over the
length of the combustion chamber. The mass flow rate for air addition
is taken as a continuous function of downstream position. The total
air addition is specified, so that by profile we mean the distribution of
air addition. The optimal profile is the one that vaporizes and burns
the maximum amount of fuel over the length of the combustion
chamber, subject to the physics of the combustion and certain impo-
sed constraints. Then, we set a target of zero for both the droplet
radius and the fuel mass fraction at the end of the combustor. Using
the sequential linear quadratic (SLQ) algorithm [2], we determine
the optimal profile for the mass flow rate of air addition for the
vaporization, vaporization-mixing, and vaporization-mixing-reac-
tion models.

Some interesting optimization analysis for intermittent combus-
tors has been performed by Ge et al.,, using a method that
mimics evolutionary processes [3]. We are unaware of any formal
optimization work on continuous combustors before our work. We
distinguish here work on optimization from modelling attempts
concerned with active control of combustion processes.

In Sec. II, we describe the models used in our study; in addition,
the relationship between certain parameters and the amount of
fuel burned is investigated through a parameter survey which
attempts an informal optimization. The SLQ algorithm is explained
in more detail in Sec. III. Our formal optimization results are
presented in Sec. IV and the conclusions are summarized in Sec. V.
Some details can be found in Appendices A and B and Sirignano
et al. [4].

II. Models

We next briefly describe the three combustion models used in
our study. In the following, R, u, T, and Y represent droplet radius,
velocity, temperature, and mass fraction with the subscripts g, /, F,
and O pertaining to gas phase, liquid phase, fuel vapor, and air.
Quantities with asterisks are dimensional; subscript 0 implies inlet
conditions. See the nomenclature at the beginning of this paper
defining variables used. For numerical purposes (to avoid a
singularity condition in the differential equations as R approaches
zero), we construct our state variables as z; = R®, z, = R3u,,
53 =RT), 24 = uy, 25 =T,, 26 = Yp, and z; = Y. The first five
quantities have been converted to a nondimensional form,
using the initial values for droplet radius, gas velocity, and gas
temperature to normalize. We add a final state zg = m,, which is
the nondimensional amount of secondary-air flow rate between the
inlet and position x. Its purpose is to force the nondimensional rate
of air input drz,/dx to integrate to the prescribed amount of air
added over the length, namely, m}/myg; this is accomplished by
fixing the final value

Udrm i
1 = —a d / = —1
z(1) A o g

as a constraint later in the optimization. From these state variables
we form the state vector which yields eight simultaneous ordi-
nary differential equations for the vaporization-mixing-reaction
model:
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with pg = (1.0131510°)(p/R},T,) being the inlet gas density
(kg/m3). U(x) is the control variable defined such that the
distribution of secondary-air input (drz}/dx) = U?(x) is positive.
From the initial values R(0)=1, u,(0) =u,, T,(0)=T,,
u,(0)=1,Y,=0,Y,=1,T,(0) = 1, the inlet conditions (x = 0)
of the state vector are z(0)=(1, u,, T,, 1, 1, 0, 1,
0)”. The target values at the combustor exit (x = 1) are chosen
asz(1) = (0, na, na, na, T,, 0, na, m}/ms)T, where
T, is the thermodynamically correct exit temperature; na means no
target is specified. Q is the constant nondimensional fuel heating
value and L.y is the effective heat of vaporization as defined by
Sirignano [1]; L*, A*, and v are the chamber length, constant
chamber-cross-sectional area, and mass stoichiometric ratio. Models
for the internal liquid droplet heating, droplet drag per unit volume
D*, and droplet vaporization rate per unit volume M* are taken from
Sirignano [1], sections 2.1.2, 3.1.5, and 3.2, respectively. A perfect
gas is assumed. At the low velocities and Mach numbers considered,
the pressure variation can be neglected in the equation of state
whereas it remains important in the momentum equation.

The first three differential equations above for the liquid phase and
the final differential equation are identical in all three models.
Droplets are assumed to remain spherical with uniform but time-
varying internal liquid temperature. The last terms in the fourth—
seventh equations represent the combined effects of gas mixing and
chemical reaction. Vaporization produces fuel vapor, increasing the
value of the mass fraction Y. The mixing rate is determined by a
classical eddy-breakup model with the length scale given by using
the largest turbulent eddies which are of the order of the chamber
dimension and with the turbulent kinetic energy proportional to
square of the local gas velocity.

The « variable in the differential equations contains both the
nondimensional characteristic mixing time +/A*/z, and the non-
dimensional characteristic chemical time 7,,. The vaporization-
mixing model is obtained when 7., is replaced by zero earlier.
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The vaporization model is obtained by suppressing the sixth and
seventh differential equations and by replacing the final term in the
fourth and fifth equations with MQ and (zs/ z4)M Q, respectively.
More details on the vaporization rate law and drag law are provided in
Appendices A and B and in Sirignano et al. [4].

A. Comparison of Models

The models are simplistic but still have five—seven characteristic
times, and so they are adequate for this purpose of constructing a
framework for optimization of continuous combustors. In our steady-
state representation, these time scales are converted to spacial scales.
Each model has two (gas and droplet) residence times, a droplet-
heating time, a droplet-vaporization time, and a droplet-deceleration
time. The vaporization-mixing model adds a gas-mixing time
whereas the vaporization-mixing-reaction model adds both a gas-
mixing time and a chemical-reaction time. This count does not
include the multitime scales that can be associated with the control to
be used later, i.e., rate of air addition. And so we do have arich control
challenge.

In the calculations presented in this paper, the total mass flux of air
addition equals the mass flow of air flowing through the inlet at
x = 0. The fuel injection mass flow rate at x =0 is 1.5 times the
stoichiometric amount to burn with the inlet air or, equivalently, 0.75
of the stoichiometric amount required to burn the total air flow. In
other words, we begin with a fuel-rich situation at x = 0 but, with the
subsequent air addition, a fuel-lean situation develops.

As can be seen in Fig. 1, the vaporization-mixing model does not
burn as much of the fuel as the vaporization model due to the added
time accounting for mixing to take place. The vaporization-mixing-
reaction model which takes into account the chemical reaction that
must take place for the combustion of the fuel and air takes even
longer. Note that the chemical reaction has more effect at lower
temperatures. We also provide some comparisons between the other
states for the vaporization model and vaporization-mixing model.
As can be expected, the temperature reaches higher levels in the
vaporization model than in the vaporization-mixing model. The gas
velocity u, is also much higher in the vaporization model than in the
vaporization and mixing model. This is expected because the higher
temperature results in lower density which causes an increase in
velocity for the expanding gas. The liquid velocity u; is higher in the
vaporization model than in the vaporization-mixing model. The
increased gas velocity resulted in a greater drag force and acceler-
ation of the liquid drops. The liquid temperature 7 is also higher in
the vaporization model than in the vaporization-mixing model due to
increased heat transfer rates caused by the higher gas temperatures.
The Y mass fraction in the vaporization and mixing model is very
small but has an impact due to the large quantity of energy contained
in the fuel.

B. Simulation Analysis and Informal Optimization

We are able to establish some general relationships by simply
changing some of the parameters. The base set of parameters is
R; =80 um, uj=15m/s, L* =.175m, p =20 atm, T;=

1 ok +
0.8
0.6
R3
0.4
—— Vaporization Model
02 —%— Vap-Mixing Model
' - - - Vap-Mix-Reaction Model
0 . . . .
0 0.2 0.4 0.6 0.8 1

X
Fig. 1 Comparison of nondimensional droplet volume amongst the
three models.

300 K, and 7§ = 900 K. In the parameter survey, one parameter at
a time is varied while the other parameters remain at base values.
Briefly, the results follow:

1) As the initial radius decreases, the amount of fuel burned
increases monotonically.

2) As the initial liquid velocity decreases, the amount of fuel
burned increases monotonically.

3) As the length of the chamber increases, the amount of fuel
burned increases monotonically.

4) As the pressure increases, the amount of fuel burned increases
monotonically.

5) As the initial liquid temperature increases, the amount of fuel
burned increases monotonically.

6) As the initial gas temperature increases, the amount of fuel
burned increases monotonically.

Also, as a preliminary step in developing a sense for the optimal
air-input rate profile, we compare three different types of air-input
rate profiles for the vaporization-mixing model:

1) An exponentially decaying profile (dm,/dx)=
(m}/m§) (e /1 — e™®) where for this computation we choose
the parameter @ = 10. This profile injects almost all of the air near the
inlet at the upstream end of the combustion chamber.

2) Another profile compared is a flat profile (dm,/dx) = 1 which
sends a constant amount of air into the chamber over its entire length.

3) A power profile (dri,/dx) = a(m}/m)x*~", where we choose
the parameter o = 10 again but now in a new context, is also
considered. This profile injects almost all of the air at the downstream
end of the chamber near the flow exit.

We can see from Fig. 2 that the more air that is injected toward the
upstream inlet, the more fuel is burned by the exit x = 1. The
exponentially decaying profile is better than both a flat profile and a
power profile. Consequently, we suspect that the optimal control
results will yield a distribution weighted toward the upstream inlet
for the mass flow rate of air addition.

These first results do not clash in any major way with prior
knowledge from more sophisticated computations or empirical
data. And so, although our combustion models are substantially
simplified, we find them useful for the development of an optimal
control approach.

There are two factors that influence the burning of the fuel droplets
in opposing ways so as to present an interesting control problem. As
we inject more of air into the chamber of given cross-sectional area
near the upstream inlet, the gas velocity is increased. Consequently,
the droplet drag increases and the droplet will accelerate more
because of the air addition and spend less time in the combustion
chamber, having less time to completely burn. However, the injection
of air in the upstream portion of the chamber would also increase the
droplet Reynolds number and thus vaporize and burn the droplet
more quickly. And so some challenge exists to bring the proper
balance here.

III. Optimal Control Framework

We first formulate the problem as an optimal control problem in
continuous time (really space in this problem) over the fixed interval

1 Aok
0.8
0.6
R3
0.4 ‘
*  Flat Profile AN
0.2+~ — Exponentially Decaying Profile N
Power Profile
0 . . . .
0 0.2 0.4 0.6 0.8 1
X

Fig. 2 Comparison amongst different air-addition profiles for the
vaporization-mixing model.
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0 < x <1, with the system dynamics given by (1) and compactly
expressed here as

z(x) = f(z(x), Uv));

and with the initial conditions zy = (1, u;,, T,, 1, 1, O,
1, 0)7 defined in Sec. II. We can then formulate the continuous-time
optimal control problem as

z(0) =z, @

mU.iszC =d(z(x=1)) + Al I(z(x), U(x))dx

z(x) =f(z(x).U(x))  z(0) =12 (€)
where J€ is the cost function that we wish to minimize and ®, I(z, U)
are selected as discussed later to achieve the design objectives. A
general discussion of optimal control problems can be found in
Luenberger [5]. We remark again that we use the square of the control
U to express (dsi1,/dx) = U? so that we can avoid imposing addi-
tional constraints on the control in (3) to keep driz,, /dx positive when
we optimize over U. For computational purposes, the continuous-
time optimal control problem is first discretized. More specifically,
using a Runge-Kutta formulation, the continuous space of x from
0 to 1 is discretized into N + 1 points from n = 0 to n = N and we
obtain the following discrete-time optimal control problem:

N—1
minJ? = ®(z(V)) + ;L(z(n), U(n), n) @)

subject to

z(n+1)=F(z(n).Umn);  z(0)=1z ®)
where the functions F and L result from f and /, respectively, through
the discretization of the continuous-time optimal control problem.
The cost function J? has a terminal penalty term ®(z(N)) which
enforces the desired end states, as well as the running cost penalty

N—1

Y L(z(n), U(n),n)

n=0

which dictates what values we wish the states to take over the entire
space of the combustion chamber. By minimizing the cost function,
we come closer to our targets for the state vector z. We choose the cost
function J? (and clearly J©) to be quadratic, namely, we define ® and
L as follows:

L(z(n). U(n),n) = %[Z(n) —z,(m]"Qn)[z(n) — z,(n)]

+ %[U(n) — Um)J"Rm[U(n) — U,(n)] (6)

0(2) = 5[~ (VI QVIz — 7, (V)] )

where z, is the state target, and we define the penalty matrix Q(N)
with the penalties on the final states as

Q (N) = (10%,0,0,0, 104, 10%,0, 10)” 8)

In addition, we are only interested in reaching the target state
values: we want all of the fuel to be burned at n = N, the gas
temperature to leave the chamber at the correct thermodynamic
exit temperature 7, and the proper amount of air ri1} /1 injected
over the length of the chamber. Therefore, we set Q(n) to O for
0 <n < N —1. Note that in this problem U(n) is a scalar but in
principle it could be a vector containing multiple controls. R(n) are
penalties used to keep the controls U(n) near specified target values
U,(n) and, in particular, when U,(n) = 0 as in our case to guard
against large control values; if no such objective is necessary, R(n)
can be taken small but for technical reasons cannot be set equal to
zero. Here we take R(n) = 4 for all n.

The optimal control is found iteratively using the SLQ algorithm
developed by Sideris and Bobrow [2] to solve nonlinear discrete-time
optimal control problems. More specifically, let the current control
sequence be U,, =[U(0)---U(n)---UN — 1)]" at iteration m,
with the corresponding states [solved from Eq. (5)] being Z,, =
[27(0)---z"(n)---z"(N)]". The state dynamics are then linearized
about U, and Z, to give z(n+ 1) =F_(z(n),U(n))z(n) +
Fy(z(n), U(n))U(n) where F, = (0F/dz) and Fy, = (0F/0U).
Note that we use a bar to denote deviations from their nominal values
of corresponding variables in the linearized version of the problem.
Let also J” denote the cost index J? as a function of U(n) and z(n),
after substituting U(n) + U(n) and z(n) + z(n) for U(n) and z(n),
respectively. Minimizing J? over U(n) and Z(n), subject to the
linearized dynamics and with initial state Z(0) = 0, yields an optimal
solution U,, =[U(0)---U(n)--- UT(N — 1)]”. Then we perform a
step from U, in the direction defined by U,, to compute the next
control U, as follows:

Um+l = Um + amUm (9)
where we choose «,, by solving the 1-D search problem

min J[U,, + «,,U,] (10)

O<a,, =<1

Essentially, we step as far as U,, + U,, in the direction determined
by U,, as long as the cost is not increasing. The SLQ algorithm
guarantees that U, is a descent direction and that U,, converges to a
solution such that the first-order optimality conditions (11-14) as
described below are satisfied [2]:

z(n+1)=F(z(n).Un);  z(0)=1z, (In

AT(n) =AT(n+ DF (z(n), Un)) + L (2(n), U(n)) (12
A (N) = @, (z(n)) (13)

0=H,(A(n+1).z(n).U(n)) (14)

where A (n) is the adjoint trajectory and H is the Hamiltonian defined
by

H(\,z,U) = A"F(z,U) + L(z, u) (15)

More details on the optimization analysis can be found in
Appendix C of Sirignano et al. [4].

IV. Results and Discussion
A. Results for Vaporization-Controlling Model

As mentioned earlier, there are two factors that influence the
burning of the fuel droplets. Upstream injection of the air causes
more acceleration and a lower residence time in the chamber for the
droplet. However, the upstream injection of air would also increase
the droplet Reynolds number and thus cause the droplet to vaporize
more quickly. The vaporization model has the least number of
characteristic times because mixing time and chemical time are
implicitly equal to zero. And so, the optimization here is not as subtle
as for the other models. We choose to optimize under parameters
such that with a flat profile there is less than 10% of unburned fuel at
the chamber exit. Then, optimizing under the parameters L* = .4 m,
Ry =70 pm, ujpy =30 m/s, ujy=40m/s, T5 =900 K, Tj=
300 K, and p = 10 atm, we find the optimal function for drmz, /dx to
be such that the air is injected mostly near the upstream inlet,
conforming to an exponentially decaying profile. The latter factor,
the increased burning of the droplet due to the higher Reynolds
number, is then the dominant one of the two. Then, as the
discretization grid becomes finer, the optimal control for drm,/dx
tends to a delta function at x = 0.
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=u2

dm,/dx

% 02 04 06 08 1
X
Fig. 3 Control for vaporization model with constraint on maximum

rate of air addition.

Because this solution is physically unacceptable, we impose a
maximum on the control by using a sigmoid function; with this
constraint, the resulting optimal air profile exponentially decays
more gradually and is depicted in Fig. 3. The corresponding states for
the optimal profile are shown in Fig. 4. We can observe that the
droplet radius R has practically converged to O at the end of the
combustor as required.

B. Results for Vaporization and Mixing Model

For the vaporization-mixing model, we consider here an
initial droplet radius R} =60 pum, L* =0.4 m, ujy =30 m/s,
uz =40 m/s, T =900 K, Tj =300 K, and p = 10 atm. The
results for the second model indicate a slower burning than found for
the vaporization model even though the preceding model calculation
had a larger initial droplet size. So that, as expected, the mixing
process takes more time. Results are shown in Figs. 5 and 6. It is still
optimal to inject the air toward the beginning of the chamber. It can be
observed that droplet volume R? and the fuel vapor mass fraction Y
achieve very low values at the end of the combustor. These values
can be further optimized toward zero if desired by selecting higher
penalty terms for the corresponding states in (8).

C. Results for Vaporization-Mixing-Reaction Model

For the vaporization-mixing-reaction model, we use the same
parameters as with the vaporization-mixing model. The general
results for this model are shown in Figs. 7 and 8. It is again optimal to

0 " . . .
0 0.2 0.4 x 0.6 0.8 1

Fig. 4 States with constraint on maximum rate of air addition:
a) liquid-phase variables, and b) gas-phase variables.

14
12
10

dm,/dx

8
6
4
2
0

20 0.2 0.4 06 08 1
X
Fig. 5 Optimal control for vaporization-mixing model: rate of air

addition.
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777“9 //
3 -=T - 1
—o— 10, -
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0.5¢ ]
C > o0
0 0.2 0.4 0.6 0.8 1

Fig. 6 States for vaporization-mixing model: a) liquid-phase variables,
and b) gas-phase variables.

inject most of the air at the beginning of the combustion chamber.
However, a secondary pulse of air injection is provided downstream.
The air addition follows just downstream of the beginning of the
temperature increase. Sufficient vaporization and reaction has
occurred for the chemical reaction to begin. Presumably, if more air
had been injected upstream, the gas temperature would have been
forced downward, delaying ignition and slowing droplet heating
and vaporization, and so the optimization procedure found a more

14

Fig. 7 Optimal control for vaporization-mixing-reaction model.
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X
Fig. 8 States for vaporization-mixing-reaction model: a) liquid-phase
variables, and b) gas-phase variables.

interesting distribution for the air addition. Still, the droplet volume
R? and the fuel vapor mass fraction Y maintain higher values at the
end of the combustor than the values found in the preceding models.
Clearly, the addition of the chemical time slows the burning process.
These final exit values can be further optimized toward zero by
selecting higher penalty terms for the corresponding states in (8). If
the initial gas temperature were lowered, the chemical time could
increase significantly because of the exponential dependence.

V. Conclusions

Three combustion models have been proposed. In order of
increasing complexity and increasing number of characteristic times,
they are a vaporization-controlling model, a vaporization-mixing
model, and a vaporization-mixing-reaction model. The vaporization-
mixing model takes longer than the vaporization-controlling model
for the fuel to be burned due to the added time needed for the fuel and
air to mix. The burning with the vaporization-mixing-reaction model
is still slower than with the vaporization-mixing model, implying that
the chemical reaction does take an additional amount of time to
occur. At lower initial temperature the time for the chemical reaction
to take place will be higher.

The behaviors of all of the models are monotonic in certain
parameters including initial radius, initial liquid velocity, length of
the chamber, pressure, and initial liquid temperature. As each of
these parameters increases, the amount of fuel burned decreases,
decreases, increases, increases, and increases, respectively.

Informal attempts at optimization using monotonic air-addition
profiles are shown to be limited in capability. With this informal
process, we show that the burning of the fuel appears to be not too
highly sensitive to our choice of a specific air injection monotonic
profile, with modest changes to the amount of liquid fuel vaporized
depending upon which profile we choose. Injecting more of the air
upstream produces an improvement of a few percent more of the
original amount of fuel vaporized than when choosing a flat profile,
as shown in Fig. 2. Still more improvement is found in compari-
son with the power profile that injects most of the air toward
the downstream end of the chamber. Note that the ranking of the air-
input profiles are somewhat invariant under different lengths of the

chamber; it is always advantageous to inject the air at the upstream
end.

We find much more interesting and improved results with the
formal optimization process. Using the SLQ algorithm, we were able
to find the optimal air-input profile along the chamber. The optimal
choice is generally to inject most of the air upstream. However,
Figs. 5 and 7 show that the optimal rate of air addition can have local
peaks at more than the inlet because of the added characteristic times.

There are two factors which influence whether it is optimal to
inject the air at the upstream location: first, the Reynolds number will
be higher and the fuel will be burned faster, but, second, the air will
accelerate the fuel droplets causing them to spend less time in the
chamber and consequently not have as much time to completely
burn. The optimal control result suggests that the former is the
stronger factor.

There are some differences between the optimal air profile for the
vaporization model and the vaporization-mixing model. Although
both inject most of the air at the upstream end of the chamber, the
latter does so much more gradually whereas the former (without any
constraints on its maximum) seeks to inject it all initially at x = 0.
This is consistent with our understanding of the models; the
vaporization-mixing model must allow for more time for the fuel and
air to mix. Consequently, more air is injected later when the mixing
has been completed. The vaporization model has no need to wait
for the completion of the mixing because it has approximated it
as an instantaneous process. The optimization process for the
vaporization-mixing-reaction model clearly creates a second pulse of
air addition downstream, which occurs once vaporization and mixing
processes are sufficiently advanced and the ignition has occurred.

The framework developed here with the SLQ algorihm offers
promise for application to other choices of control variables for
optimal control of continuous combustors and to other more detailed
combustion models with higher dimensions.

The authors are unaware of available experimental or computa-
tional data in which variations of secondary-air configurations
have been studied. And so, at this time, comparisons are not possible.
The results of this paper could motivate future studies of that type.

Appendix A: Determination of Vaporization Rate
The vaporization rate of an individual droplet is taken as a positive
number and can be written as
||

*

nh= Al
g =" (A1)
where n* is the number of droplets per unit volume. From Sirignano
[1], for Schmidt number equal to one, the individual-droplet vaporiz-
ation rate for a droplet moving relative to the surrounding gas can be

represented as

~ R
m’ = 4mp*D*R* log(1 + B)|:1 + Tee’Re

0.6(2Re)*>(1 — e‘Re)] (A2)

F(B)

where D* is the mass diffusivity. The Reynolds number Re, transfer
number B, and function F(B) are given by

Polug — uipl Rg

Re = plu, — u;|R - (A3)
0
Yy
Bp=—F5_ Ad
=, (A4)
F(B)=[1+ B]‘”W (A5)

where pg is the dynamic viscosity which is assumed to be constant
and Yp, is the mass fraction of fuel vapor in the gas at the droplet
surface.
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The mass fraction of fuel vapor at the surface is a strong function of
liquid temperature, fuel properties, and pressure. In particular

YF.r — (l/p*)eLa*/(R*T;)e—La/T, (A6)

where T is the boiling point at 1 atm of pressure La = La*/ (Ié*T({),
p* here must be measured in atmospheres, and R* is the gas constant
for the liquid species (i.e., the universal gas constant divided by
molecular weight).

It can also be shown [1] that

Lw T—T,
Ty B

Loy = (A7)

To avoid a singularity condition in the differential equations as R
approaches zero, we introduce a sigmoid o, to halt the calculations
if R is less than a small number €. Similarly, if there is no oxygen left
to burn, we do not wish the model to continue burning the droplet.
This second sigmoid o, stops the calculations if the air mass fraction
Y, drops below a small number €,. More specifically, we define

1

0= 1 + e—)tl(zl—ﬂ) (AS)
1

0, (A9)

= 1 + e 2(Yo—e)
Then, if we define h = (1 + .5Re)e R + .42RETI,/2(1 — e Re), the
vaporization rate becomes

4/3
M = 47e 0,0, 2 In(1 + B)h (A10)
22

Equation (A2) has the mass rate of vaporization becoming

proportional to Re for low Re and becoming proportional to Re'/? for
large Re.

Appendix B: Determination of Drag Force
The drag per unit volume on droplets is given by

1
D*=n*CDEp*(u*—u;‘)|u*—u;‘|nR*2 (B1)

For a vaporizing droplet, we can state

12
Ch=— B2
D™ Re(1 + B) (B2)
Now the nondimensional drag may be written as
_ D:L*z _ 6mc; (u—u))R B3)
Polo (1+B) U
where the constant ¢ is defined as
3 * *n‘,l* L*A*
¢ =200 oy (B4)

= Py %2
4mp; " Ry

Note that the chamber length L* appears only through the constant
Cy.
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