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A computational analysis of transverse acoustic instability is presented for an experimental combustion chamber

with rectangular cross section. The analysis is shown to be efficient and accurate. The governing equations are solved

onmultiple, coupled grids, which are two-dimensional in the combustion chamber and nozzle and one-dimensional in

the injector port. Thus, they allow for a fast simulation, even in a serial run. Because of the lengthscale difference, the

jet flame behavior at the injectors (including effects of turbulence) can be decoupled from the acoustic effects and

solved on a local grid for each jet flame emerging from an injector.Wave propagation through the injector feed ports

is evaluated on additional, one-dimensional grids for each injector port. The overall algorithm is used to simulate the

Purdue seven-injector rocket engine; good quantitative agreement between simulations and experiment is achieved.

All simulations that are predicted to be unconditionally unstable are confirmed by the Purdue experiment. Small

perturbations grow to a limit cycle for which the shape is a first transverse acoustic mode of the chamber. Only one

result differs from experiment, albeit very slightly.

Nomenclature

a = speed of sound, m∕s
Cx, Cη = rapid-distortion strain of velocity field
cp = specific heat at constant pressure, J∕°K · kg
D = mass diffusivity, m2∕s
E = energy release rate, J∕kg · s
L = chamber thickness, m
lm = mixing length
p = pressure, N∕m2

Rc = chamber wall radius of curvature, m
r = radial position, m
Sij = velocity field strain tensor
T = temperature, K
t = time, s
YF = fuel mass fraction
YO = oxidizer mass fraction
α, β = Schwab–Zel’dovich variables
γ = Ratio of specific heats
η = local radial coordinate for the injector grids
νT = turbulent kinematic viscosity, m2∕s
ρ = density, kg∕m3

ωi = reaction rate of species i, s−1

Subscripts

F = fuel
i, j = index for Cartesian coordinates
O = oxidizer
0 = undisturbed state

I. Introduction

W E ADDRESS the problem of liquid-propellant rocket engine
(LPRE) combustion instability, which is a well-known and

undesirable phenomenon in rocket operation. The high energy

release by combustion can, in certain conditions, reinforce acoustic
oscillations, causing them to grow to destructive amplitudes. LPRE
combustion instability provides a very interesting nonlinear dynamics
problem, as shown by both theory and experiment: [1–3].
There are two general types of acoustical combustion instability:

“driven” instability and “self-excited” instability as noted by Culick
[4], who describes evidence in some solid-propellant rockets of the
driven type in which noise or vortex shedding causes kinematic
waves (i.e., waves carriedwith themoving gas) of vorticity or entropy
to travel to some point where an acoustical reflection occurs. The
reflected wave causes more noise or vortex shedding after travelling
back, and a cyclic character results. These driven types, which
primarily occur in solid rockets, do not rely on acoustical chamber
resonance and are much smaller in amplitude than the self-excited
instabilities found in liquid-propellant rocket motors [2,5], because
the energy level is limited by the driving energy and solid propellants
have less chemical energy per unit mass that liquid propellants. The
frequency of oscillation for cases in which vortex shedding is a factor
depends on two velocities, the sound speed and the subsonic,
kinematic speed of the vortex. Consequently, the frequency is lower
than a purely acoustic resonant frequency. Oscillations of this type
are found in the longitudinal mode; they will not be addressed in this
research.
Interest in propellant combinations of hydrocarbon fuel and

oxygen, stored as liquids, is returning in the LPRE field. The analysis
and results here will address situations in which the hydrocarbon and
oxidizer propellants are injected coaxially as gases. These propellants
will have elevated temperatures at the injectors because they have
been used before injection, either for partial combustion for gas
generation to drive a turbo pump or as a coolant before injection. In
particular, the inlet temperature and the mean combustion-chamber
pressure were carefully chosen to place the mixture in the super-
critical (but near perfect gas) domain. Therefore, realism is main-
tained here when the chamber flow is treated as gaseous and the
perfect gas law is used.
The dynamic coupling of the injector system with the combustion

chamber of a liquid-propellant rocket engine has been a topic of
interest for many decades. Two types of instabilities are known to
occur. The chugging instability mode has nearly uniform but time-
varying pressure in the combustion chamber. The combustion cham-
ber acts as an accumulator or capacitor while the inflowing propellant
mass flux oscillates, because the oscillating chamber pressure causes
a flux-controlling oscillatory pressure drop across the injector. This
low-frequency instability was characterized by Summerfield [6]. The
second type of coupling involves a high frequency oscillation at a
near-resonant chamber mode frequency. Here, the resonant frequen-
cy has been modestly adjusted because the acoustic system involves
some portion of the internal volume of the injector as well as the
combustion chamber and convergent nozzle volumes. Crocco and
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Cheng [7] discuss both types of instability for one-dimensional (1-D,
or longitudinal) oscillations. Interesting discussions of coupled
injector-system acoustics by Nestlerode, Fenwick, and Sack and by
Harrje and Reardon can be found in Chapter 3 of the well-known
NASA SP-194 [1]. More recent overviews and analyses are provided
by Hutt and Rocker [8] and DeBenedictus and Ordonneau [9]. Yang
et al. [10] provide several interesting articles on the design and
modelling of rocket injector systems.
The disturbances that trigger combustion instability can result

from fluid-mechanical disruptions in the propellant injection process,
shedding in the combustion chamber of large rogue vortices that
eventually flow through the choked nozzle [11], extraordinary excur-
sions in local burning rates [12,13], an acceleration of the entire
LPRE engine [12,14], or a synergism amongst such events.
In this paper, an analysis is presented of nonlinear, transverse-

mode combustion instability in a rectangular LPRE combustion
chamber with a long nozzle, the length of which is comparable to the
length of the combustion chamber. Thus, the present study builds on
previous analyses [3,12,13].A particular experimental configuration,
the seven-injector rocket engine studied by the Anderson group at
Purdue University [15–17], is simulated. The Purdue experimental
group studied transverse oscillations in a rectangular cross-section
combustion chamber.
Although the rectangular cross-section combustion chamber is not

practical for high-pressure operations, it has long been a useful ex-
perimental device with easier access for measurements and observa-
tions. Reference [1] contains several early works on rectangular
cross-section combustion chambers. Bracco and Harrje from
Princeton University, and Coultas and Nestlerode from Rocketdyne
discuss (in subsections 7.2.4 and 9.2.2.4, respectively) the use of
square cross sections for the study of longitudinal modes. Certain
observations and measurements were made easier with this cross
section. Coultas and Nestlerode discuss their 2-D rocket motor,
which takes a rectangular, diametrical slice of an actual motor
(subsection 9.2.2.5). Sirignano presents a generalized, 3-D, linear
theory and applies it to several combustion chamber shapes for
transverse oscillations (subsection 3.5.1); rectangular cross sections
are considered there. Levine [18] expounds on the Rocketdyne
experience with the 2-D motor. With various practical propellant
combinations, stable and unstable operational domains were found;
transverse oscillations could be triggered.
In practice, propellant flow through the injector can be in the same

liquid phase as the stored propellant, in a gaseous form mixed with
combustion products because of upstream flow through a preburner
used for a propellant turbopump, or in gaseous form because the liquid
propellant was used as a combustion-chamber-wall coolant upstream.
We consider here gaseous coaxial flow of the pure propellants, RP1,
ethane, and hydrogen peroxide, based on the last scenario. In the
experimental study, RP1 is still in the liquid phase at the injector’s exit,
and its vaporization is not modeled here.
The remainder of this paper is organized as follows: the experi-

mental setup for the seven-injector rocket engine is presented in
Sec. II, the governing equations of the pressure wave dynamics are
given in Sec. III. Section IV presents the calculation of heat release
performed on local cylindrical grids for each injector. Computational
results are given in Sec.V, and a brief discussion on the computational
cost of this procedure is provided in Sec. VI. Finally, conclusions are
drawn in Sec. VII.

II. Experimental Configuration and Results

The Purdue combustion chamber is shown in Fig. 1. Its upstream
portion is rectangular, of length 13.39 cm, width 26.67 cm, and height
3.81 cm. This is followed by a straight converging nozzle of length
9∕84 cm, the throat of which has a cross section of 15.07 cm×
1.44 cm.
The injector plate contains seven injectors spaced apart evenly in

the transverse direction, with a distance of 3.81 cm between adjacent
injector axes. Each injector consists of an oxidizer post coaxial with a
surrounding fuel inlet, with the oxidizer post diameter being 2.05 cm
and the fuel inlet outer diameter being 2.31 cm, with an inner diam-

eter of 2.229 cm. For the central study injector, the length of the
oxidizer post is 12.92 cm, and the length of the fuel inlet is 2.79 cm;
for the driving injectors, the length of the oxidizer post is 17.04 cm,
and the length of the fuel inlet is 2.28 cm.
The oxidizer mixture for the central study element is 90%

hydrogen peroxide, which is partially decomposed at the beginning
of the oxidizer post and fully decomposed by the time it reaches the
combustion chamber orifice. Thus, the inlet mixture in the combus-
tion flame grids is, on a mass basis, 58% H2O and 42% O2, for an
H2O mass flow rate of 0.106 kg∕s and an O2 mass flow rate of
0.076 kg∕s; the inlet temperature is 1029 K. The fuel mixture for the
study element is ethane, with a mass flow rate of 0.025 kg∕s and an
inlet temperature of 319 K.
The oxidizer mixture for the driving elements element is again

58%H2O and 42%O2, with anH2Omass flow rate of 0.113 kg∕s, an
O2 mass flow rate of 0.083 kg∕s, and an inlet temperature of 1029 K.
The fuel mixture for the driving elements is RP1, with a mass flow
rate of 0.033 kg∕s and an inlet temperature of 298.15 K. Decane will
be used in our model to represent the RP1. In this study, we simulate
several of the experimental configurations studied by the Anderson
group, in particular the configurations OOXOXOO, OXXOXXO,
XOOOOOX, and XOXOXOX, in which an “X” indicates an injector
port with only oxidizer inflow (i.e., the fuel ports for that injector are
plugged) and “O” indicates an injector port with both fuel and oxi-
dizer. In all of these configurations, the central study element has
ethane fuel inflow, and the difference amounts to which of the driv-
ing elements have RP1 fuel inflow.
With this experimental configuration, a spontaneous instability of

peak-to-peak amplitude of 620 kPa ismeasured,with amean pressure
of 965 kPa. Time histories of pressure can be found on Fig. 8 is on
page 9 of [17]. The frequency of the first transverse mode component
of the instability is 2032 Hz.

III. Basic Equations for Wave Dynamics

The equations for pressure and velocity in the chamber are sim-
plified: the scale of turbulent motions is considered to be much
smaller than the acoustic wave scale, the lengthscale of which is
comparable to the lengthscale of the combustion chamber. Thus, it
can be assumed that turbulence andmolecular diffusion do not have a
significant impact on the large-scale pressure and velocity wave
fields, which can then be solved in inviscid form.

A. Three-Dimensional Wave Equations

Following the developments in [3], the large-scale pressure wave
equation has the form.

∂2p
∂t2

− a2
∂2p

∂xj∂xj
� ∂ρ

∂t
∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

(1)

The left side of the equation represents the wave operator in three
dimensions. The second term on the right represents the influence of
the combustion energy release on the acoustic instability and is thus
an integral component of the study of rocket engine instability.

Fig. 1 Rectangular combustion chamber and nozzle with injectors.
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The large-scale velocity components evolve by

∂ui
∂t

� uj
∂ui
∂xj

� C

p1∕γ
∂p
∂xi

� 0 (2)

in which C � p
1∕γ
0 ∕ρ0, and the assumption is made that pressure

dominates over the turbulent and molecular viscosity terms.
These equations, applied previously to a cylindrical chamber

[3,12,13], were successful in identifying three domains within the
parameter space: unconditional instability, conditional instability,
and unconditional stability. Transients and limit cycles were pro-
duced for several different instability events.

B. Reduction to a Two-Dimensional Wave Equation

In this study,we use the fact that the combustion chamber is narrow
in the height dimension, which implies that the solution fields vary
little in that dimension and can therefore be averaged over it. The
chamber height L�x; y� is constant over the initial section of the
combustion chamber and varies linearly with x in the converging
nozzle portion of the chamber.
Following Sirignano and Popov [3], 2-D averages (here, over the

height dimension) of the pressure and velocity fields

~p��1∕L�x;y��
Z

L�x;y�

0

pdx3; ~ρ��1∕L�x;y�
Z

L�x;y�

0

ρdx3;

~a��1∕L�x;y��
Z

L�x;y�

0

adx3; and ~u��1∕L�x;y��
Z

L�x;y�

0

udx3

Integrating Eq. (1) over x3 and neglecting the difference between
products of averages and averages of products, we get

∂2 ~p
∂t2

− ~a2
�

∂2 ~p
∂xj∂xj

� 1

L

∂L
∂x1

∂ ~p
∂x1

�
� ∂ ~ρ

∂t
∂ ~a2

∂t
� �γ − 1� ∂

~E

∂t
�

� ~a2
∂2� ~ρ ~uj ~ui�
∂xi∂xj

� ~a2
1

L

∂L
∂x1

∂� ~ρ ~u1 ~ui�
∂xi

(3)

in which i � 1, 2 and j � 1, 2. The last terms on both the left and
right sides correspond to the effect which the variable combustion
chamberwidth (in the x3 direction) has on the divergence operators in
Eq. (1). The preceding equation contains derivatives of L only in the
x1 direction, because L does not vary in the x2 direction.
Similarly, the averaged version of Eq. (2) has the form

∂ ~ui
∂t

� ~uj
∂ ~ui
∂xj

� 1

L

∂L
∂x1

� ~ui ~u1� �
C

~p1∕γ
∂ ~p
∂xi

� 0 (4)

These equations are solved on an orthogonal curvilinear coordi-
nate system, which represents a conformal map of the present hexag-
onal domain onto a square. The curvilinear form of Eqs. (3) and (4),
with the associated nomenclature, is given in Appendix A.
At the walls of the combustion chamber, the boundary conditions

on the pressure and velocity are

~un � 0;
∂ ~p
∂n

� ~p1∕γ ~u2t
CRc

(5)

with ~un and ~ut, respectively, denoting the components of velocity
normal and tangential to the wall boundary, andRc denoting the wall
boundary’s radius of curvature. At the downstream end of the conver-
gent nozzle, a Mach number M � 0.9 is enforced, and the short
nozzle approximation is used to represent the additional convergence
to a choked throat, as an approximation to the sonic condition in the
experiment. This is done in order to ensure the numerical stability of
the compressible solver algorithm. Because the longitudinal distance
between the points of M � 0.9 and 1.0 is small compared with the
acoustic wavelength, the approximation is suitable for the present
analysis.

IV. Determination of Heat Release Rate E with Coaxial
Injection

Weseek tomodel the heat release rate of change ∂E∕∂t, which is an
integral component to the acoustic instability pressure wave equa-
tion, Eq. (1). Following [3], we shall denote α � YF − νYO, in which
YF and YO are the fuel and oxidizer mass fractions and ν is their
stoichiometric ratio. Then, α is a conserved scalar, which we will
determine in thevicinity of each injector on an axisymmetric cylindri-
cal grid with the assumption that the injector flow field is mostly in
the direction coaxial to the injector. An illustration of the grids used
for the jet flames emerging from the seven injectors, and their relation
to the combustion chamber grid, is given in Fig. 2.
With the variable β being defined by β � �Q∕�cpTo��YF�

T∕To − �p∕po��γ−1�∕γ , where Q is the fuel's specific chemical
energy, the evolution equations for the variables α, β, andYF have the
following form:

∂α
∂t

� ux
∂α
∂x

� uη
∂α
∂η

−D

�
∂2α
∂η2

� 1

η

∂α
∂η

� ∂2α
∂x2

�
� 0 (6)

∂β
∂t

� ux
∂β
∂x

� uη
∂β
∂η

−D

�
∂2β
∂η2

� 1

η

∂β
∂η

� ∂2β
∂x2

�
� 0 (7)

and

∂YF

∂t
� ux

∂YF

∂x
� uη

∂YF

∂η
−D

�
∂2YF

∂η2
� 1

η

∂YF

∂η
� ∂2YF

∂x2

�
� ωF (8)

in which x and η, respectively, are the axial and radial coordinates of
the cylindrical injector grids, and the source term on the right side of
Eq. (8) is obtained from a Westbrook–Dryer two-step oxidation
mechanism [19], from the fuel (C2H6 for the central injector element,
C10H22 for the driving injector elements) to CO, and then fromCO to
CO2. To obtain the concentrations of both the injector fuel and CO
from the fuel mass fraction, it is assumed that oxidation of CO occurs
only after the partial oxidation of the fuel to CO has reached its
completion. This simple two-step mechanism does not allow for the
presence of common combustion radicals, such as OH, and therefore
would lead to an overprediction of the flame temperature. Because of
the considerable amount ofwater vapor in the oxidizer flow, however,
this overprediction of temperature is expected to be on the order of
5% and will not have a significant impact on the sound speed within
the combustion chamber.
Building on Sirignano and Popov [3], the source term in Eq. (8) is

obtained via an assumed probability density function (PDF) method
model for α and β, so that themeans of α and β evolve by Eqs. (6) and
(7) and their subgrid distributions are assumed to be beta functions,
which are standard PDFs for modeling mixing of two or more
streams. The term ωF in Eq. (8) is then obtained via integration over
the sample space of α and β. The assumed PDF model has been used
with great success for the simulation of turbulent nonpremixed

Fig. 2 Cylindrical jet flame grids (wireframe mesh) and 1-D injector
port grids situated within the rocket engine.
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flames, which are not near extinction [20]. For more details, the
reader is referred to [20].
The axial and radial velocities in Eqs. (6–8) are obtained from a

solution of the variable density Reynolds-averaged Navier–Stokes
axisymmetric equations:

ρ

�
∂ux
∂t

�ux
∂ux
∂x

�uη
∂ux
∂η

�
�−

∂pl

∂x
�ρνT

�
∂2ux
∂x2

�1

η

∂
∂η

�
η
∂ux
∂η

��

(9)

ρ

�
∂uη
∂t

�ux
∂uη
∂x

�uη
∂uη
∂η

�
�−

∂pl

∂η
�ρνT

�
∂2uη
∂x2

�1

η

∂
∂η

�
η
∂uη
∂η

�
−
uη
η2

�

(10)

which are solved on each jet flame grid, in which pl�x; η; t� is a local
hydrodynamic pressure for which the mean is, by definition, 0 and
which has considerably lower magnitude than the injector pressure
p�t� obtained from Eq. (1). The density in Eqs. (10) and (11) is
obtained from the species scalars and the long-wavelength pressure
p�t� at the injector’s location, so that the overall procedure for solving
Eqs. (10) and (11) is elliptic.
The turbulent viscosity νT is evaluated based on a mixing-length

model [21]:

νT � l2m�2 ~Sij ~Sij��1∕2� (11)

in which ~Sij is the strain tensor of the velocities in Eqs. (10) and (11)
and lm is the mixing length, defined as

lm�x� �
3

1� Cx�x� � Cη�x�
r1∕2�x� (12)

In the preceding formula, r1∕2�x� is the radius in the constant x
plane at which the velocity magnitude has decreased to 1∕2 of its
maximum value, and Cx�x�, Cη�x� are the values of strain of the
approximately axisymmetric velocity fields of Eqs. (10) and (11) by
the chamber velocity obtained in solution to Eq. (4). Utilizing rapid-
distortion theory (RDT) [21], the fluctuating velocity field evolves
and is driven by themean strainwhen the time scale of themean strain
is much faster than that of the turbulence. Hence, Cx, Cη evolve by

dCx�x�
dt

� Cx�x�
∂ ~u1
∂x1

� �1 − Cx�x���2 ~Sij ~Sij��1∕2� (13)

dCη�x�
dt

� Cη�x�
∂ ~u2
∂x2

� �1 − Cη�x���2 ~Sij ~Sij��1∕2� (14)

in which the velocity strain terms ∂ ~u1∕∂x1 and ∂ ~u2∕∂x2 are evaluated
at the point in the combustion chamber grid that corresponds to the

point at a distance of x along the injector grid’s centerline. Aswe shall
see in Sec. V, the use of the rapid-distortion correction improves the
agreement of the computational results with experiments: without it,
the underprediction of the oscillation amplitude is much more
pronounced.
Finally, following Popov, Sideris, and Sirignano [12], the pressure

and velocity in the injector posts are solved via the set of 1-D wave
equations:

∂2p
∂t2

− a2
∂2p
∂x2

� a2
∂2�ρu2�
∂x2

−
∂a2

∂t
∂�ρu�
∂x

(15)

∂u
∂t

� u
∂u
∂x

� −
1

ρ

∂p
∂x

(16)

They are solved on a 1-D grid upstream of each cylindrical injector
grid (shown in Fig. 2). In this model, velocity fluctuations affect the
energy release rate through the modification of the eddy diffusivity,
mixing rate, and rate of propellant inflow into the combustion
chamber. Pressure fluctuations, on the other hand, affect the chemical
rate and drive the injector port velocity fluctuations.

V. Results

With the simulation procedure described here, it was found that the
seven-injector combustion chamber is unconditionally unstable for
all experimental cases with the exception of the XOXOXOX case,
which is conditionally unstable. For the rest of the cases, arbitrarily
small perturbations grow to a limit cycle for which the major compo-
nent is the first transverse mode of the chamber in the x2 direction.
Figure 3 shows a contour plot of the pressure field in a fully-

developed limit cycle oscillation for the most unstable OOXOXOO
case. Two different perturbation mechanisms were tested: the first
consisted of setting an initial condition that is a first transverse mode
pressure wave of low amplitude, whereas the second consisted of the
imposition on the combustion chamber of a reciprocating accelera-
tion in the transverse, x2 direction. As can be seen in Fig. 3, both
disturbance mechanisms produced the same instability waveform,
which indicates that, for this setup, the shape of the limit cycle does
not depend on the initial condition.
It was found that the limit cycle does not produce shocks; upon grid

refinement the pressure gradients in the transverse direction do not
increase. This is consistent with the experimental findings of Shipley
et al. [17], which did not discover the existence of shocks in the
experimentally measured instability. For the OOXOXOO case, a
contour plot of the temperature field for the ethane injector is given in
Fig. 4. As can be seen on that plot, themaximum flame temperature is
2890 K, with a coflow temperature of 2660 K, which is in good
agreementwith the numerical results of Shipley et al. [17],who report
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Fig. 3 Pressure contours for acoustic limit cycles for the seven-injector rocket engine. (Left) A limit cycle caused by an incited low-amplitude pressure
wave. (Right) A limit cycle caused by reciprocating acceleration.
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a maximum temperature of approximately 2800 K and a coflow
temperature of approximately 2550 K.
To illustrate the time-dependent nature of the solution, Fig. 5 plots

(for the OOXOXOO case) the calculated pressure over four cycle
periods at four different locations: at the outlet of the central (study)
injector, at the outlet of one of the outermost driving injectors, at the
center of the nozzle, and at the edge of the nozzle. The power
spectrum density of the pressure signals is also shown, with peaks at
the 1931 Hz frequency and its harmonics. It can be seen that the
leading edge of the pressure wave has a sharper gradient than its

trailing edge, but the gradient is still finite. Note that, although the
central injector falls at a pressure node of the linear first transverse
acoustic mode, there is still some pressure oscillation at that location,
due to higher-order effects.We also note that the pressure oscillations
at the central injector are out of phase with the larger amplitude
oscillations near the side wall.
Finally, comparing the pressure time histories of Fig. 5 to their

experimental counterparts shown in Fig. 8 is on page 9 of [17], we see
that the present numerically calculated time histories of pressure are
smoother than the experimental measurements; it is also observed
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Fig. 4 Temperature contour plots for the center injector (OOXOXOO case). The fuel for this injector is C2H6.
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that the power spectral density away from the first transverse
frequency and its harmonics has a lower magnitude. This can be
attributed to the fact that the present study is of a 2-D nature, and the
smaller 3-D turbulent structures are not represented.
For the OOXOXOO” case, Fig. 6 plots the transverse velocity at

the central and outer injector and at the center of the nozzle. We note
that the transverse velocity is greatest at the central injector, which
falls on a velocity antinode of the linear first transverse mode. Time
histories of the net heat releases from the central and outer driving
injector are given in Fig. 7. For the driving injector, we can see
considerable large amplitude oscillation of the heat release over time.
It is this variation that drives the transverse acoustic instability. The
stronger response of the heat release rate near the outer injector versus
the inner injector implies that pressure coupling, either directly or via
wave propagation in the injectors, is stronger than velocity coupling of
the energy release rate. The coupling of pressure or velocity with the
energy release is two way. The pressure and velocity histories at the
flame affect the local energy release rate. The energy release rate at
the flame has a global effect on pressure and velocity throughout the
chamber, manifesting as a source term in the pressure wave equation.
Additional comparisons with experimental data can be made with

respect to the frequency and amplitude of the limit cycle. Figure 8
plots the eventual limit cycle magnitudes, for the different experi-
mental cases, of simulations in which the initial condition is a first
transverse mode wave of varying initial amplitude.
As can be seen on that figure for the cases OOXOXOO,

OXXOXXO, and XOOOOOX, all initial perturbations down to a
magnitude of 1 kPa produce a limit cycle for which the amplitude is
constant for the given test case. For the XOXOXOX case, an initial

perturbation of amplitude 1 kPa will decay, whereas perturbations
of amplitude 2 kPa will grow to an acoustic limit cycle. Thus, our
simulation procedure predicts that the first three cases mentioned
above are unconditionally unstable, which is in agreement with the
experimental data (in the experiment, the instability developed
spontaneously, without the need for forcing), and the XOXOXOX
case is conditionally unstable, contrary to experimental data. Both the
simulations and the experiment indicate that the XOXOXOX case is
close to the physical bifurcation in the operational domain known
commonly as the linear stability limit. Thus, somedifference between
experiment and computation here is to be expected; the overall trend
is properly predicted.
Despite this disagreement for the XOXOXOX case, overall the

present simulation predicts the stability characteristics of the seven-
injector rocket motor exceptionally well. The limit-cycle amplitudes
and frequencies for the four cases (in those simulations in which a
limit cycle was observed) are given in Table 1.
As can be seen in this table, the present computational procedure

tends to underpredict both the amplitude and frequency of the
experimentally observed limit cycles. In terms of frequency, the
numerical results are consistently between 5 and 6% lower than
experimental results. The relative error in the limit-cycle amplitude
varies more, with the maximum being 8% and the minimum being
4%. We also note that the disagreement in amplitude and frequency
tends to be greater in the more stable cases, XOOOOOX and
XOXOXOX. Overall, however, the quantitative agreement is strong
(6.25% mean relative error for amplitude, 5.25% mean relative error
for frequency) for a simulation procedure such as the present,
optimized for low computational cost, for design purposes.
We also note that the use of the RDT model encapsulated by

Eqs. (12–14) contributes to the good agreement between experiment
and simulation: without RDT, the simulated limit-cycle amplitudes are
543, 379, 157, and 66 kPa for the OOXOXOO, OXXOXXO,
XOOOOOX, and XOXOXOX cases, respectively. Thus, especially in
the cases with a large limit-cycle amplitude, the underprediction of
experimental results would be considerably more pronounced without
the incorporation of the RDT model. Because the RDT model allows
us tomodel the nonaxisymmetric straining of the injector flames by the
transverse pressure waves and the effect of this strain on the injector
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flames’ turbulent combustion, the superior performance of the
simulation with the RDT model is consistent with expectations.
Finally, we note that the stability regime of the combustion

chamber can be greatly affected by modifying the injector mass flow
away from the reported experimental values. As shown in Table 2,
reducing the oxidizer mass flow of the outer driving injectors of the
OOXOXOO case to 70% of the experimental values yields a condi-
tionally unstable simulation: a limit cycle oscillation of 213 kPa
amplitude is predicted but only for first transverse mode perturba-
tions with amplitude 98 kPa or greater. Further reducing the oxidizer
mass flow rate to 50% of the experimental values leads to an
unconditionally stable regime.

VI. Computational Cost

The main advantage of the present computational procedure over
existing numerical algorithms is in its very low computational cost.
Because of the fact that the governing equations were simplified to a
form that could be solved on coupled sets of 2-D and 1-D grids, each of
the simulations run for this study took approximately 1000 s in serial
implementation. Combined with the reasonable prediction of the
combustion chamber’s stability characteristics, this makes the present
computational procedure a useful tool in exploring the stability charac-
teristics of a given rocket engine and in developing design strategies for
stability, from both a passive and an active control viewpoint.

VII. Conclusions

The computational procedure previously developed in Sirignano
and Popov [3] and Popov, Sideris, and Sirignano [12] for the simula-
tion of transverse combustion instabilities in a cylindrical rocket
motor has been extended for use in rectangular, long-nozzle rocket
motors. The theoretical extensions include the use of RDT, coupling
of diffusivity with transverse velocity, an assumed-PDF flamelet
model that estimates subgrid mixing, and unsteady nozzle flow. The
algorithm was applied to the Purdue seven-injector rocket engine
experiment, and it was discovered that three of the configurations
were unconditionally unstable, with the smallest perturbations grow-
ing to an instability. One other configuration was conditionally
unstable, requiring a modest trigger.
The shape of the limit cycle, which is a first transverse mode, is

independent of the destabilizing event. Reasonable quantitative
agreement between the computational model and experimental results
was achieved, with a mean relative error (across the four test cases) of
5.25% in the frequency of the limit cycle and a mean relative error of
6.25% in the limit cycle amplitude. Finally, based on a comparison of
the heat release fluctuationsbetween the central andouter injectors, it is
determined that pressure oscillations have a stronger effect on the
energy release rate than do oscillations of the transverse velocity.

Appendix: Differential Equations for Pressure and
Velocity in Curvilinear Coordinates

Here, we present the form of Eqs. (3) and (4), which is solved on
the combustion chamber pressure and velocity orthogonal curvilinear
grid. We use the variables q1 and q2 to denote the coordinates of the
curvilinear grid. Then, using hi to denote the Lamé coefficients, with
J � h1h2, using gij and g

ij, respectively, to denote the covariant and
contravariantmetric tensors andΓk

ij to denote the Christoffel symbols
of the second kind, the curvilinear form of Eq. (3) is
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in which in the preceding equation indices with braces, such as �i�,
are not summed over. Similarly, the curvilinear form of Eq. (4) is
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The 2-D coordinates are equivalently the solutions of the Laplace
equation. Thereby, they follow the streamlines and potential flow
lines of a fictitious incompressible potential flow in the same chamber
and convergent nozzle.
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