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The probability of a liquid-propulsion rocket motor to develop screeching instability is studied computationally.

The combustion chamber is accelerated as a rigid body using a prescribed acceleration time history; it is found that

accelerations of proper magnitude, duration, and frequency induce a pressure wave inside the combustion chamber

that grows to a screeching acoustic wave limit cycle. For a rectangular rocket motor, a reciprocating transverse

acceleration leads to the development of a transverse pressure wave limit cycle; for a cylindrical rocket motor, the

limit cycle may be either a standing wave, for a transverse reciprocating acceleration, or a spinning wave, for a

transverse rotating acceleration. It is found that a limit cycle may be induced by either a large acceleration pulse of

short duration or a smaller acceleration pulse of a longer duration. The polynomial chaos expansionmethod is used to

study the probability of growth to a limit-cycle oscillation when the amplitude and frequency of the transverse

acceleration pulse are random.

Nomenclature

a = speed of sound, m∕s
aC�t� = acceleration time history, m∕s2
cp = specific heat at constant pressure, J∕�°K kg�
D = mass diffusivity, m2∕s
E = energy release rate, J∕kg · s
Fi = inertial volumetric force, N∕m
L = chamber thickness, m
p = pressure, N∕m2

Rc = chamber wall radius of curvature, m
r = radial position, m
T = temperature, K
t = time, s
u = fluid velocity, m∕s
x̂ = unit vector in x direction
ŷ = unit vector in y direction
Yi = mass fraction of species i
α; β = Schwab-Zel’dovich variables
γ = ratio of specific heats
η = local radial coordinate for injector grids
νT = turbulent kinematic viscosity, m2∕s
ρ = density, kg∕m3

ωi = reaction rate of species i, m−1

Subscripts

F = fuel
i = index for chemical species
i, j = index for Cartesian coordinates
O = oxidizer
0 = undisturbed state

I. Introduction

ACOUSTIC combustion instability of liquid-propellant rocket
engines is a well known and potentially destructive phenom-

enon that occurs when existing acoustic disturbances within a
combustion chamber are amplified by the energy release of combus-
tion [1,2]. The resulting acoustic oscillations typically lead to heat
damage to the rocket engine, due to hot products from the combustion
chamber’s interior being brought into closer proximity of the
chamber walls.
The typical combustion instability setting occurs for motors that

are linearly stable, so that small disturbances decay, but may develop
an instability for a large enough perturbation, usually caused by an
unforeseen event. Previously, it has been demonstrated that such
disturbances can come in the form of an acoustic wave within the
combustion chamber [3], a localized pressure pulse that models a
bombing experiment [4], or a blockage in one of the rocket motor
injector ports [5]. All of these mechanisms share the characteristic
that they originate within the rocket engine (either in the combustion
chamber or injector ports) and may thus be observed either on a test
stand experiment or in flight.
For several rocket engine designs that exhibit no combustion

instability in test stand experiments, behavior suggesting combustion
instability is observed in flight.§ This suggests that external acceler-
ation imposed on the rocket motor, due to in-flight vibration and
aerodynamic forces, is an important potential mechanism for instability
generation in otherwise stable engine designs.This study focuses on the
exploration of this mechanism for combustion instability.
In this work, we consider the effects of externally imposed

acceleration on two different types or rocket motors: a ten-injector
rocket engine with a cylindrical combustion chamber and a seven-
injector rocket engine with a rectangular combustion chamber. The
latter of these two is based on an experimental setup at Purdue
University [6], with modified inflow conditions chosen so that the
overall system is conditionally unstable. The original experimental
conditions, which cause unconditional transverse instability of the
rocket motor, have also been simulated using the present code, with
the results presented in [7]. That study observed good agreement
between simulation and experiment, validating the presentmodelling
and computational approach.
The ten-injector cylindrical rocket engine was previously studied

and shown to be conditionally unstable, with a limit-cycle instability
that could be triggered by a preexisting pressure wave [3], a pressure
pulse [4], and an injector blockage [5]. The combustion chamber is a
cylinder of which the length is L � 0.5m and of which the radius is
R � 0.14 m, with the injectors distributed in three rings, with one
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injector at the center of the chamber, three injectors at a radius of

r � R∕2, and the remaining six injectors spread evenly at a radius of

r � 3R∕4 from the center (see Fig. 1).
Each injector consists of two concentric ports, the inner of which

serves as the oxidizer port and has a radius of 0.898 cm, and the outer,

annular port has an inner radius of 0.898 cm and an outer radius of

1.1 cm and serves as the fuel inlet. Both fuel and oxidizer injector

ports have a length of 11.5 cm. For this case, the fuel is CH4, the

oxidizer isO2, and themean pressure inside the combustion chamber

at standard operating conditions is 200 atm. For more details of this

computational configuration, the reader is referred to [3,5]. The

injector inlets are modeled as pressure-driven inflows, with a fixed-

pressure inlet manifold separated from the injector inlets by an

obstruction of the fixed discharge coefficient [5,7]. Therefore,

acoustic coupling between the inlet manifold and the combustion

chamber is approximated as negligible.
With x, y being the transverse directions as shown on the left of

Fig. 1, we consider two types of combustion chamber acceleration

time histories; in both of these cases, only the chamber’s position

changes, not its orientation. In Case 1, the acceleration is given by

aC � A0 cos�−ωt�x̂� A0 sin�−ωt�ŷ (1)

so that the acceleration vector rotates circularly in the chamber

transverse direction. As we shall later see, this type of acceleration

may produce a spinning wave limit cycle. The parameters that

describe a given acceleration time history are its amplitude A0,

angular frequency ω, and length T of the acceleration period; for

t > T, the chamber is not further perturbed.
In Case 2, the acceleration is given by

aC � A0 sin�−ωt�ŷ (2)

which describes a reciprocating vector in the y direction that may

induce a standing wave limit cycle.
The second rocket engine considered in thiswork has a rectangular

combustion chamber with seven injectors (see Fig. 2). The geometry

and propellants are the same as described in [8] for the “OOXOXOO”

case: the central port of each injector runs a mixture of 58%H2O and

42% O2 as the oxidizer, with the fuel in the central injector being

C2H6, the fuel in the outer two injectors on each side beingRP1 (here
modelled as decane), and the injectors on both sides of the central one

having no fuel inflow.
A departure is made from the experimental conditions in that the

propellantmass flow rate is reduced by 30 to 70%of the experimental

values. For this mass flow rate, the numerical algorithm described in

the following section predicts a conditionally unstable system,

whereas for the original experimental values, both the experimental

data and numerical calculations [7] indicate an unconditionally

unstable engine. As the object of this study is to determine which

acceleration perturbations may destabilize an otherwise stable

engine, the mass flow modification is justified.
The acceleration specification for the rectangular chamber is

analogous to Case 2 for the cylindrical chamber. Namely, the

acceleration time history follows Eq. (2), where ŷ is the transverse

direction of the combustion chamber, over which the injectors are

spread. With this specification, an acceleration pulse of sufficient

magnitude and length, and frequency close to that of a first transverse

acoustic mode, may cause the development of an acoustic wave

limit cycle.

Fig. 2 Geometry of the rectangular seven-injector rocket motor and
propellant ports.

Fig. 1 Left: cylindrical combustion chamber and injector distribution. Right: axisymmetric cylindrical grid used for the solution of each of the ten
injector jet flames.
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II. Wave Dynamics Equations

There are several simplifications that can bemade for the equations

of pressure and velocity. Because the scale of the turbulentmotions is

much smaller than the acoustic wave scale, we can assume that

turbulence and molecular diffusion do not have a considerable

influence over the large-scale pressure and velocity wave fields.

Therefore, the pressure and velocity wave fields can be solved in

inviscid form.

A. Wave Equations Without Acceleration

Following [3], the chamber pressure wave equation has the form

∂2p
∂t2

− a2
∂2p

∂xj∂xj
� ∂ρ

∂t
∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

(3)

The left-hand side of the equation represents the wave operator in

three dimensions. The second term on the right represents the

influence of the combustion energy release on the acoustic instability

and is thus an integral component of the study of rocket engine

instability.
The large-scale velocity components evolve by

∂ui
∂t

� uj
∂ui
∂xj

� C

p1∕γ
∂p
∂xi

� 0 (4)

where C � p
1∕γ
0 ∕ρ0, and the assumption is made that pressure

dominates over the turbulent and molecular viscosity terms.
These equations are applied to both the cylindrical and rectangular

combustion chambers by averaging over one of the spatial directions,

alongwhich there is little variation of the pressure and velocity fields.

For the cylindrical chamber simulations, which focus on transverse

instabilities, averaging is performed in the axial direction [5]; for the

rectangular chamber cases, the averaging is done across the short

vertical distance in Fig. 2 [7].

B. Effect of Acceleration on Combustion Chamber Wave Equations

In this work, we solve for pressure and velocity in a reference

frame fixed to the combustion chamber, which undergoes irrotational

acceleration aC�t�. Therefore, in the accelerating frame, the fluid

experiences the inertial (volumetric) force

Fi � −ρaC�t� (5)

This inertial body force acting on the fluidmodifies themomentum

equation, which becomes

∂ui
∂t

� uj
∂ui
∂xj

� C

p1∕γ
∂p
∂xi

� ac
i � 0 (6)

aswell as the pressurewave equation, which, in the noninertial frame,

has the form

∂2p
∂t2

− a2
∂2p

∂xj∂xj
� ∂ρ

∂t
∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

� a2
∂ρ
∂xi

aCi

(7)

Additionally, the inertial force modifies the pressure boundary

condition at the chamber walls, the form of which is

∂p
∂n

� p1∕γu2t
CRc

−
p1∕γaCn

C
(8)

where ut is the velocity component tangential to the boundary, Rc is

the wall boundary radius of the curvature, and n and aCn are the unit

outward normal vector at the boundary and the component of the

acceleration in that direction, respectively.

In this study, we use the fact that the rectangular combustion
chamber is narrow in the height dimension, which implies that the
solution fields vary little in that dimension and can therefore be
averaged over it. The chamber height L�x; y� is constant over the
initial section of the combustion chamber and varies linearlywith x in
the converging nozzle portion of the chamber.
Following Sirignano and Popov [3], two-dimensional averages are

made (here, over the height dimension) of the pressure and velocity

fields ~p � �1∕L�x; y��∫ L�x;y�
0 p dz, ~ρ � �1∕L�x; y�∫ L�x;y�

0 ρ dz, ~a �
�1∕L�x; y��∫ L�x;y�

0 a dz, and ~u � �1∕L�x; y��∫ L�x;y�
0 u dz. Integrating

Eq. (3) over z and neglecting the difference between products of
averages and averages of products, we get

∂2 ~p
∂t2

− ~a2
�

∂2 ~p
∂xj∂xj

� 1

L

∂L
∂x1

∂ ~p
∂x1

�
� ∂ ~ρ

∂t
∂ ~a2

∂t
� �γ − 1� ∂

~E

∂t
�

� ~a2
∂2� ~ρ ~uj ~ui�
∂xi∂xj

� ~a2
1

L

∂L
∂x1

∂� ~ρ ~u1 ~ui�
∂xi

(9)

where i � 1, 2; j � 1, 2. The last terms on both the left- and right-
hand sides correspond to the effect that the variable combustion
chamber width (in the x3 direction) has on the divergence operators in
Eq. (3). The previous equation contains derivatives ofL only in the x1
direction because L does not vary in the x2 direction.
Similarly, the averaged version of Eq. (4) has the form

∂ ~ui
∂t

� ~uj
∂ ~ui
∂xj

� 1

L

∂L
∂x1

� ~ui ~u1� �
C

~p1∕γ
∂ ~p
∂xi

� 0 (10)

These equations are solved on an orthogonal curvilinear
coordinate system, which represents a conformal map of the present
hexagonal domain onto a square. The curvilinear form of Eqs. (9) and
(10), with the associated nomenclature, is given in Appendix A.
At the walls of the combustion chamber, the boundary conditions

on the pressure and velocity are

~un � 0;
∂ ~p
∂n

� ~p1∕γ ~u2t
CRc

(11)

with ~un, ~ut denoting the components of velocity normal and
tangential to the wall boundary, respectively, and Rc denoting the
wall boundary’s radius of curvature. At the downstream end of the
convergent nozzle, a Mach number M � 0.9 is enforced for the
rectangular chamber case, and the short nozzle approximation [9] is
used to represent the additional convergence to a choked throat, as an
approximation to the sonic condition in the experiment. This is done
for the sake of accuracy and numerical stability, as the present code is
designed for subsonic flows. When compared to the acoustic length
scale (the chamber width), the distance between the M � 0.9 and
M � 1.0 locations is negligible and thus also is the approximation
error caused by treating this region as a short nozzle.

III. Additional Model Equations

We seek to model the heat release rate of change, ∂E∕∂t, which is
an integral component to the acoustic instability pressure wave
equation, Eq. (3). Following [3], we shall denote α � YF − νYO,
where YF, YO are the fuel and oxidizer mass fractions, and ν is their
stoichiometric ratio. Then, α is a conserved scalar, which we will
determine in the vicinity of each injector, on an axisymmetric
cylindrical grid with the assumption that the injector flow field is
mostly in the direction axial to the injector.
With the variable β being defined by β � �Q∕�cpTo��YF�

T∕To − �p∕po��γ−1�∕γ , the evolution equations for the variables α,β,
YF have the form

∂α
∂t

� ux
∂α
∂z

� uη
∂α
∂η

−D

�
∂2α
∂η2

� 1

η

∂α
∂η

� ∂2α
∂z2

�
� 0 (12)
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∂β
∂t

� uz
∂β
∂z

� uη
∂β
∂η

−D

�
∂2β
∂η2

� 1

η

∂β
∂η

� ∂2β
∂z2

�
� 0 (13)

and

∂YF

∂t
� uz

∂YF

∂z
� uη

∂YF

∂η
−D

�
∂2YF

∂η2
� 1

η

∂YF

∂η
� ∂2YF

∂z2

�
� ωF

(14)

where z and h are the axial and radial coordinates of the cylindrical
injector grids, respectively, and the source term on the right-hand side
of Eq. (14) is obtained from a Westbrook–Dryer two-step oxidation
mechanism [10], from the fuel (C2H6 for the central injector element
and C10H22 for the driving injector elements) to CO and then from
CO toCO2. To obtain the concentrations of both the injector fuel and
CO from the fuel mass fraction, it is assumed that the oxidation of CO
occurs only after the partial oxidation of the fuel toCOhas reached its
completion.
Building on [3], the source term in Eq. (14) is obtained via an

assumed-probability density function (PDF)model forα and β so that
the means of α and β evolve by Eqs. (12) and (13) and their subgrid
distributions are assumed to be beta functions, which are standard
PDFs for modeling mixing of two or more streams. The term ωF in
Eq. (14) is then obtained via integration over the sample space of α
and β. The assumed PDF model has been used with great success for
the simulation of turbulent nonpremixed flames that are not near
extinction [11]. For more details, the reader is referred to [11].
The axial and radial velocities in Eqs. (12–14) are obtained from a

solution of the variable density Reynolds-averaged Navier–Stokes
axisymmetric equations,

ρ

�
∂uz
∂t

� uz
∂uz
∂z

� uη
∂uz
∂η

�
� −

∂pl

∂z
� ρνT

�
∂2uz
∂z2

� 1

η

∂
∂η

�
η
∂uz
∂η

��

(15)

ρ

�
∂uη
∂t

�uz
∂uη
∂z

�uη
∂uη
∂η

�
�−

∂pl

∂η
�ρνT

�
∂2uη
∂z2

�1

η

∂
∂η

�
η
∂uη
∂η

�
−
uη
η2

�

(16)

which are solved on each jet flame grid, where pl�z; η; t� is a local
hydrodynamic pressure of which the mean is by definition zero and
that has a considerably lower magnitude than the injector pressure
p�t� obtained from Eq. (3). The density in Eqs. (16) and (17) is
obtained from the species scalars and the long-wavelength pressure
p�t� at the injector’s location so that the overall procedure for solving
Eqs. (16) and (17) is elliptic.
Finally, following Popov et al. [5], the pressure and velocity in the

injector posts are solved via the set of one-dimensional wave
equations:

∂2p
∂t2

− a2
∂2p
∂l2

� a2
∂2�ρu2�
∂l2

−
∂a2

∂t
∂�ρu�
∂l

(17)

∂u
∂t

� u
∂u
∂l

� −
1

ρ

∂p
∂l

(18)

They are solved on a one-dimensional grid upstream of each
cylindrical injector grid. In thismodel, velocity fluctuations affect the
energy release rate through the modification of the eddy diffusivity,

mixing rate, and the rate of propellant inflow into the combustion
chamber. Pressure fluctuations, on the other hand, affect the chemical
rate and drive the injector port velocity fluctuations.
For initial conditions to the model equations described in this and

the prior sections, the authors use a steady-state solution of an
unperturbed combustion chamber. Since the present study deals with
conditionally unstable (i.e., stable to small disturbances) configura-
tions, a steady-state solution can be obtained without special
treatment of the rocket motor startup.

IV. Deterministic and Stochastic Acceleration of
Cylindrical Rocket Motor

For both cases, rotating and reciprocating acceleration, we set the
angular frequencyω to 2π∕τF, where τF � 0.478 ms is the period of
the first tangential acoustic mode of the combustion chamber. Setting
the period to T � 2τF and varying the amplitude A0, we run several
calculations for both Cases 1 and 2. The resulting pressure wave
amplitudes at the end of the simulation are plotted as functions of A0

on Fig. 3.
As can be seen in that figure, an amplitude aboveA0 � 1900 m∕s2

causes an acoustic instability for Case 1, and an amplitude above
A0 � 3100 m∕s2 causes the growth of an acoustic instability in Case
2. Both types of instabilities have the shape of a first tangential
acoustic mode, with the difference that in Case 1 thewave is spinning
whereas in Case 2 it is standing. It is important to note that the
spinning acceleration pulse of Case 1 can cause an instability at a
lower amplitude, due to the larger L2 norm of aC�t� for a set A0 in
Case 1.
Figure 4 shows the development of a spinning acoustic wave in

Case 1. It is interesting to note that at the early stages of the limit
cycle’s development the pressure perturbations are localized near the
chamber walls. This is due to the fact that, with the present model, the
density throughout the combustion chamber is initially uniform so
that the density gradient terma2�∂ρ∕∂xi�aCi in Eq. (7) is equal to zero.
Rather, the initial disturbance in the pressure field comes about due to
the inertial force term in the boundary condition, Eq. (8), so that the
pressure disturbance spreads inward from the walls.
As a companion to Fig. 4, in Fig. 5we include a longitudinal cross-

section, along the plane defined by x � 0, which also includes three
of the ten injectors. This figure illustrates clearly how the pressure
disturbance propagates inward from thewalls, and then upstream into
the injector ports, once an injector is reached.
An acceleration pulse has the capability to not only cause the

development of a limit cycle but to also suppress it. Specifically, for
all the cases from Fig. 3, adding an additional pulse of duration
T � 2τF and frequency ω � 2π∕τF, but of amplitude −A0,
succeeded in arresting the growth of the acoustic instability. This
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Fig. 3 Final pressure wave amplitude as a function of acceleration
amplitude.
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finding is consistent with earlier results [4,7] in which other pulsing

mechanisms could provide stabilization. In the next section, we also

consider cases when the “antipulse” occurs after some delay.

In addition to the deterministic simulations described previ-

ously, we also perform a polynomial chaos expansion (PCE) [4]

solution for the cylindrical rocket motor. The stochastic parameters

0 0.2 0.4

−0.1

−0.05

0

0.05

0.1

z(m)

y(
m

)

t = 1e−5

−0.1 0 0.1 0.2 0.3 0.4

−0.1

−0.05

0

0.05

0.1

z(m)

y(
m

)

t = 2e−5

−0.1 0 0.1 0.2 0.3 0.4

−0.1

−0.05

0

0.05

0.1

z(m)

y(
m

)

t = 4e−5

−0.1 0 0.1 0.2 0.3 0.4

−0.1

−0.05

0

0.05

0.1

z(m)

y(
m

)

t = 16e−5

1.9998

1.9999

1.9999

2

2

2.0001

2.0002

x 10
7

1.9985

1.999

1.9995

2

2.0005

2.001

2.0015

x 10
7

1.9992

1.9994

1.9996

1.9998

2

2.0002

2.0004

2.0006

x 10
7

1.997

1.998

1.999

2

2.001

2.002

x 10
7
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Fig. 4 Initial stages of development of a spinning acoustic wave (spin direction is clockwise). Pascals are the contour units.
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in this case are the pulse’s acceleration amplitude A0 ∈ �500 m∕s2;
4500 m∕s2�, duration T ∈ �0; 1.6 × 10−3 s�, and frequency

f ∈ �1400 Hz; 2800 Hz�. The values of A0, T and f are uniformly

distributed in these intervals and are independent of each other.

To determine the effect of each of those variables on the overall

stability of the rocket motor, we calculate the marginal probability,

for each of the three sample space variables, of the growth of the

initial disturbance to an instability. As a specific example, the

marginal probability of growth to instability as a function of a given

sample space variable ξi is calculated by integrating over the

remaining sample space variables in the vector,

Pgrowth�ξi� �
Z

χgrowth�ξ�f�ξ�j dξj≠ij∕f�ξ�j dξj≠ij (19)

where f�ξ� is the probability density function (in this case, a uniform
distribution) and χgrowth�ξ� is the indicator function of a solution

growing to instability: χgrowth�ξ� � 1when instability develops for a
given ξ and χgrowth�ξ� � 0 otherwise. The integration in Eq. (19) is

performed via a Smolyak grid quadrature.
Figure 6 shows a plot of the marginal probability, as a function of

A0, of growth to an instability. As can be expected, the probability of

growth increases monotonically with the acceleration amplitude,

with larger increments around A0 � 2500 m∕s2.
The probability of growth as a function of the pulse duration is

shown onFig. 7. On that figure, it can be observed that the probability

of growth rises monotonically with increasing duration. We note,

however, that the increase of the probability is more gradual than

on Fig. 6.
This can be attributed to the dissipation of acoustic waves that have

not risen above the threshold for triggering: increasing the duration of

an acceleration pulse increases the amount of dissipation that the
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Fig. 6 Marginal probability of growth to an instability as a function of
the acceleration pulse’s amplitude, in gravity.
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Fig. 7 Marginal probability of growth to an instability as a function of
the acceleration pulse’s duration, in seconds.
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Fig. 8 Marginal probability of growth to an instability as a function of
the acceleration pulse’s frequency, in hertz.

Fig. 10 Marginal probability of growth to an instability as a function of
the injector mass flow rate.
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Fig. 9 Marginal probability of growth to an instability as a function of
both the acceleration’s pulse’s amplitude, in gravity, and the acceleration
pulse’s frequency, in hertz.
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resultant acoustic wave has experienced by the end of the pulse,
whereas increasing the pulse’s amplitude does not.
Finally, the probability of growth to an instability is plotted in

Fig. 8 as a function of the acceleration pulse’s frequency f�Hz�. We
see that the probability is greatest near the first tangential acoustic
mode’s frequency of 2090 Hz, with frequencies above 2090 Hz
exhibiting a larger probability of growth than those below 2090 Hz.
The joint marginal probability of growth as a function of both the

acceleration amplitude and frequency is given in Fig. 9. In regions
where both parameters imply a low (high) probability of growth, e.g.,
low (high) amplitude and frequency far from the first tangential, the
joint marginal probability of growth is closer to zero (1) than a simple
Cartesian product of the marginal probabilities would be.
Based on these results, we observe that the cylindrical rocketmotor

is more unstable to disturbances of larger amplitude and duration,
with greater sensitivity to the former. Pulses ofwhich the frequency is
near that of the first tangential acousticmode aremost likely to trigger
an instability, with some preference for pulses of frequencies higher
than the first tangential than those lower than it.

V. StochasticAcceleration ofRectangularRocketMotor

For the rectangular rocketmotor, we use the PCE scheme to test the
acceleration pulses of varying amplitudes, frequencies, and for
different injector total mass flow rates. Specifically, we perform a
stochastic simulation over a three-dimensional sample space in
which the injector mass flow rate _m is distributed uniformly between
the experimental value of _m � 2.089 and 1.08 kg∕s, the frequency
f � ω∕2π is distributed uniformly between f � 1400 and 2600 Hz,
and the acceleration pulse amplitude A0 is distributed uniformly
between A0 � 0 and 220 g, with _m, f and A0 being independent.
Figure 10 shows the marginal probability of growth to an acoustic

instability as a function of the injector mass flow rate. As can be seen,

for the experimental value of _m � 2.089 kg∕s, the motor is

unconditionally unstable; the probability of growth is 1. On the other

hand, for lower values, near _m � 1.08 kg∕s, the probability of

growth is zero, and the rocket motor is unconditionally stable. For

intermediate values of the mass flow rate, we observe triggered

instability, with a growth probability between zero and 1. In all cases,

the triggered instability has the shape of a first transverse acoustic

wave for the rectangular pressure chamber (see Fig. 11).
The dependence of stability on the frequency of the acceleration

pulse is shown in Fig. 12. As can be seen in that figure, the most

destabilizing acceleration pulses are those that have a frequency

Fig. 12 Marginal probability of growth to an instability as a function of
the acceleration pulse frequency, f � ω∕2π.
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Fig. 11 Development and suppression of a transverse instability in the rectangular rocket engine. Top left: initial stages of instability development; top
right: grown transverse instability; bottom left: second acceleration pulse disrupting the acoustic instability; bottom right: decay to standard operating
conditions. Pascals are the contour units.
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around 1900 Hz, close to the frequency of the first transverse mode.
Note that, even for frequenciesmuch lower and higher than that, there
is still some probability of growth, due to the presence of the
unconditionally unstable cases, which will get destabilized by any
perturbation.
Finally, we note in Fig. 13 that, as can be intuitively expected, the

probability of growth to instability increases with increasing
amplitude of the acceleration pulse. Once again, we note that the
probability never reaches zero, due to the unconditionally unstable
cases for the mass flow rate, and neither does it rise all the way to 1,
due to the unconditionally stable cases.
In a second PCE simulation, we explore the potential for a second

acceleration pulse to stabilize the rocket motor from a triggered state.
Specifically, we set the frequency to f � 1900 Hz and the mass flow
rate to _m � 1.7 kg∕s (which is a conditionally unstable case), andwe
follow up the initial acceleration pulse of magnitude A0;1 by a
subsequent pulse of magnitude −A0;2 that is initiated at a time τ after
the initial pulse. The stochastic variables A0;1, −A0;2, and τ are
independent, with A0;1, A0;2 being uniformly distributed between 0

and 220 g and τ uniformly distributed between 5τf and 7.8τf, where
τf is the period of the first transverse mode.
Figure 11 shows the initial growth of the transverse instability, and

its suppression by the antipulse, for a case in which the antipulse is
successful in arresting instability growth. As can be seen in Fig. 14,
whether or not this is the case is highly dependent on the delay
between the antipulse and the pulse; for a delay that is close to an
integer number of first transverse periods, the antipulse has a high
probability of restoring stability.

VI. Conclusions

In this work, we have demonstrated the potential for whole-body
acceleration pulses of a rocket engine combustion chamber to lead to
the development of an acoustic instability. For both a cylindrical and a
rectangular rocket engine motor, it is found that a short acceleration
pulse of large amplitude, on the order of 100 g is capable of producing
an acoustic instability, if its frequency is close to the chamber’s
acoustic frequency. For a cylindrical rocket engine, the acoustic limit
cycle may be either a standing or a spinning wave, depending on the
shape of the acceleration pulse. Additionally, it is seen that a
subsequent pulse can also cause the decay of a growing instability, if
its timing is appropriately chosen.
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