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a b s t r a c t 

Previous works for a liquid suddenly contacting a gas at a supercritical pressure show the coexistence of 

both phases and the generation of diffusion layers on both sides of the liquid-gas interface due to local 

thermodynamic phase equilibrium. A related numerical study of a laminar mixing layer between the liq- 

uid and gas streams in the near field of the splitter plate suggests that mass, momentum and thermal 

diffusion layers evolve in a self-similar manner at very high pressures. In this paper, the high-pressure, 

two-phase, laminar mixing-layer equations are recast in terms of a similarity variable. A liquid hydro- 

carbon and gaseous oxygen are considered. Freestream conditions and proper matching conditions at 

the liquid-gas interface are applied. To solve the system of equations, a real-fluid thermodynamic model 

based on the Soave-Redlich-Kwong equation of state is selected. A comparison with results obtained by 

directly solving the laminar mixing-layer equations shows the validity of the similarity approach applied 

to non-ideal two-phase flows. Even when the gas is hotter than the liquid, net condensation can occur 

at high pressures while heat conducts into the liquid. Finally, a generalized correlation is proposed to 

represent the evolution of the mixing layer thickness for different problem configurations. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Combustion chambers used in many engineering applications 

e.g., power units, gas turbines or liquid-propellant rockets) are de- 

igned to operate at elevated pressures. That is, a thermodynamic 

egime is sought where less dissociation of the reaction products 

ccurs and a better combustion efficiency and specific energy con- 

ersion are obtained. In many situations, the chamber pressure is 

ell above the critical pressure of the liquid fuel that is being in- 

ected. Well-known fuels are based on hydrocarbon mixtures (e.g., 

iesel fuel, Jet A, RP-1) with critical pressures around 20 bar, while 

perating pressures may range from 25 to 40 bar in diesel engines 

r gas turbines and 70 to 200 bar in rocket engines. 

The performance of the combustion reaction also depends on 

ow fast the liquid fuel vaporizes and mixes with the surround- 

ng oxidizer. Therefore, understanding the physical phenomena in- 

olved in this process is necessary for a proper design of the in- 

ectors’ shape and distribution, combustion chamber size, etc. At 
∗ Corresponding author. 
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ubcritical pressures, a clear distinction exists between liquid and 

as phases, which allows for extensive experimental studies. How- 

ver, for near-critical or supercritical pressures, experimental stud- 

es show that a thermodynamic transition occurs where the liquid 

nd gas present similar fluid properties near the liquid-gas inter- 

ace, which is suddenly immersed in a variable-density layer and 

s rapidly affected by turbulence ( Mayer and Tamura, 1996; Mayer 

t al., 1998; 20 0 0; Chehroudi et al., 20 02b; 20 02a; Oschwald et al.,

006; Segal and Polikhov, 2008; Chehroudi, 2012; Falgout et al., 

016 ). 

Past works have described this behavior as a very fast transition 

f the liquid phase to a supercritical state, assuming that a two- 

hase behavior cannot be sustained under these thermodynamic 

onditions as suggested by experimental results where a gas-like 

urbulent structure is observed ( Spalding, 1959; Rosner, 1967 ). But 

vidence of a two-phase behavior at supercritical pressures in mul- 

icomponent fluids exists based on a requirement of thermody- 

amic phase equilibrium at the liquid-gas interface ( Hsieh et al., 

991; Delplanque and Sirignano, 1993; Yang and Shuen, 1994; 

irignano et al., 1997; Jordà-Juanós and Sirignano, 2015; Poblador- 

banez and Sirignano, 2018 ). At supercritical pressures, phase equi- 

ibrium enhances the dissolution of the gas into the liquid phase, 

hus generating diffusion layers on both sides of the liquid-gas in- 

erface where strong variations of fluid properties occur. Mixture 

ritical properties near the interface differ from pure fluid criti- 

al properties and, in general, the new critical pressure is higher 

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103465
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103465&domain=pdf
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han the chamber pressure. However, this does not seem to be a 

equirement to sustain two phases under very high pressures as 

iscussed in Poblador-Ibanez and Sirignano (2018) . Some authors 

uggest caution at interface temperatures near the critical temper- 

ture of the mixture at very high pressures, where the liquid-gas 

nterface enters a continuum region of a few nanometers thickness 

 Dahms and Oefelein, 2013; 2015a ). In this scenario, the interface 

eparts from local thermodynamic equilibrium and a diffuse tran- 

ition between both phases occurs ( Dahms and Oefelein, 2015b ). 

ccordingly, a two-phase behavior cannot exist. Nevertheless, at 

ower interface temperatures diffusion around the interface occurs 

apidly enough to reach diffusion layer thicknesses of the order of 

icrometers while phase equilibrium is well established ( Poblador- 

banez and Sirignano, 2018 ). Thus, the interface may still be treated 

s a discontinuity under phase equilibrium with a clear jump in 

uid properties across it, similar to how a compressive shock wave 

s considered as a discontinuity in compressible fluids. In that case, 

he non-equilibrium layer thickness for the shock is an order of 

agnitude or more greater than the layer thickness for phase non- 

quilibrium. 

There are further reasons that support the fact that liquid in- 

ection at supercritical pressures is still a two-phase problem. Sur- 

ace tension forces are reduced at very high pressures due to both 

hases presenting similar densities at the interface. Therefore, the 

erodynamic effects on the liquid breakup process are enhanced 

 Yang, 20 0 0 ). Moreover, mixing causes the liquid viscosity to drop

o gas-like values near the interface, reducing viscous damping 

f surface instabilities ( Poblador-Ibanez and Sirignano, 2019 ). Al- 

ogether, fast growing instabilities associated with smaller wave- 

engths develop at the interface, which may cause a very fast at- 

mization of the liquid jet with a cloud of very small droplets 

round it. This reasoning is further supported by numerical results 

f incompressible liquid round jets and planar sheets injected into 

 gas. For similar liquid and gas densities with reduced surface 

ension, a fast breakup process is induced with early small droplet 

ormation and enhanced radial development of the two-phase mix- 

ure ( Jarrahbashi and Sirignano, 2014; Jarrahbashi et al., 2016; Zan- 

ian et al., 2017; 2018; 2019 ). Traditional experimental techniques 

ave difficulties with visual penetration of dense sprays due to the 

cattering caused by the large amount of small droplets and the in- 

rinsic difficulties of variable-density fluids. Thus, it becomes diffi- 

ult to distinguish between liquid and gas phases. Some new tech- 

iques have been able to penetrate dense sprays and show clear 

iquid structures (i.e., ligaments, lobes, bigger droplets) emerging 

rom the liquid core, although they have not been tested yet in su- 

ercritical environments ( Minniti et al., 2018, 2019 ). 

The present work does not address the hydrodynamic instabili- 

ies that occur farther downstream as part of the atomization pro- 

ess. It focuses on the initial laminar mixing between the injected 

iquid and the gas before substantial growth of surface instabili- 

ies or transition to turbulence. Understanding how the mixing be- 

ween both streams evolves is crucial to understand the beginning 

f high-pressure atomization and can also help create models to 

se as initial conditions for more complex numerical studies. 

Davis et al. (2021) present a two-dimensional numerical study 

nvolving the non-ideal two-phase laminar mixing layer equations 

nd provide guidelines on the validity of these relations. Results 

re presented for a binary mixture where a liquid stream and a 

as stream come together at the end of a splitter plate at vari- 

us ambient pressures, ranging from subcritical to supercritical for 

he pure liquid. The liquid stream is initially composed by pure n - 

ecane and the gas stream is pure oxygen. The mixing layer thick- 

ess grows to a few micrometers in the liquid phase and to tens of 

icrometers in the gas phase with downstream distance from the 

nd of the splitter plate. At the same time, the interface reaches a 

ear-steady solution sufficiently far away from the splitter plate. 
2 
ost importantly, each individual configuration (i.e., each set of 

oundary conditions) shows signs of a self-similar behavior of the 

ixing layer evolution, even when the defined mixing layer equa- 

ions involve non-ideal terms and are coupled to a non-ideal ther- 

odynamic model involving a real-gas equation of state, thermo- 

ynamic fundamental principles and various high-pressure correla- 

ions. A self-similar behavior in this high-pressure environment is 

lso suggested in Poblador-Ibanez and Sirignano (2018) , although 

n that work a non-ideal unsteady one-dimensional model is im- 

lemented. 

Reducing the system of partial differential equations (i.e., mix- 

ng layer equations) to a system of ordinary differential equations 

n terms of a similarity variable is of special interest, not only be- 

ause a simplified mathematical model describing the same phe- 

omena is obtained, but also because of the fundamental analy- 

is implied in the transformation. Similarity solutions have always 

een sought in classical fluid mechanics (e.g., the Blasius solution 

or the flow over a flat plate or the Falker-Skan wedge flows), usu- 

lly limited to incompressible flows. Some transformations are also 

vailable for compressible flows or flows with variable fluid prop- 

rties, although simplifications are made to obtain a generic self- 

imilar model (e.g., use of ideal-gas model). In general, these ap- 

roaches are well documented in textbooks ( White and Corfield, 

006; Williams, 2018 ). When analyzing compressible or variable- 

ensity laminar shear layers, the focus is usually limited to single- 

hase configurations under ideal-gas assumptions with momentum 

nd thermal mixing. However, some works also include species 

ixing in their analysis ( Kennedy and Gatski, 1994 ). 

In views of the discussed numerical results ( Poblador-Ibanez 

nd Sirignano, 2018; Davis et al., 2021 ), the non-ideal two-phase 

aminar mixing layer equations presented in Section 2 are re- 

ast in terms of a similarity variable in Section 3 , thus form- 

ng a system of ordinary differential equations. Boundary condi- 

ions and liquid-gas interface matching relations are provided in 

ection 4 , which allow for mass, momentum and energy trans- 

er across the interface to occur. Section 5 presents the numeri- 

al approach followed to solve the self-similar system of equations. 

hen, the self-similar model is coupled to a non-ideal thermody- 

amic model to close the system of equations. The self-similar so- 

ution is compared in Sections 6.1 and 6.2 against the results from 

avis et al. (2021) with different problem configurations to as- 

ess the validity of the self-similar model. Finally, a proper non- 

imensional scaling is presented in Section 6.3 , which provides 

 semi-collapse of the self-similar solutions for different sets of 

oundary conditions. This allows the development of a correlation 

ased on freestream and interface conditions which is able to esti- 

ate mixing layer thicknesses with sufficient accuracy. 

. Non-ideal two-phase laminar mixing layer equations 

The behavior of two parallel streams coming together at the 

dge of a splitter plate can be modeled under the boundary- 

ayer approximation after a transitional region ( White and Cor- 

eld, 2006 ). For a sufficiently large Reynolds number, the flow be- 

ins to develop with the transverse velocity being much smaller 

han the streamwise velocity, v � u , and variations in the x - 

irection become negligible compared to variations in y (i.e., 

 ()/ ∂ x � ∂ ()/ ∂ y ). The transverse pressure gradient, ∂ p / ∂ y , is also

egligible. Therefore, the transverse velocity solution is directly ob- 

ained from the continuity equation and not from the transverse 

omentum equation ( He and Ghoniem, 2017; Poblador-Ibanez and 

irignano, 2018 ). For free-shear, low-Mach number flows at high 

ressures without confining walls, pressure can be assumed con- 

tant ( Dp/Dt = ∂ p/∂x = ∂ p/∂y = 0 ). Furthermore, viscous dissipa- 

ion and kinetic energy can be safely neglected in the energy equa- 

ion. 
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Both fluid streams are initially pure components (e.g., a pure 

iquid hydrocarbon and a pure gas, such as oxygen). The governing 

quations are cast in non-conservative form and in terms of the 

ass fraction of one mixture component, Y 1 , where Y 1 + Y 2 = 1 .

nder these conditions, the steady-state governing equations de- 

cribing the two-phase laminar mixing layer development of two 

on-ideal fluids (i.e., a liquid stream and a gas stream) are the con- 

inuity equation, Eq. (1) , streamwise momentum equation, Eq. (2) , 

pecies continuity equation, Eq. (3) , and energy equation, Eq. (4) . 

or simplicity, a Fickian form is used to represent mass diffusion 

n Eqs. (3) and (4) since a binary mixture is considered. The sys- 

em of equations is given as 

∂ 

∂x 
(ρu ) + 

∂ 

∂y 
(ρv ) = 0 (1) 

u 

∂u 

∂x 
+ ρv 

∂u 

∂y 
= 

∂ 

∂y 

(
μ

∂u 

∂y 

)
(2) 

u 

∂Y 1 
∂x 

+ ρv 
∂Y 1 
∂y 

= 

∂ 

∂y 

(
ρD 

∂Y 1 
∂y 

)
(3) 

u 

∂h 

∂x 
+ ρv 

∂h 

∂y 
= 

∂ 

∂y 

(
λ

c p 

∂h 

∂y 

)
+ 

∂ 

∂y 

[(
ρD − λ

c p 

)
(h 1 − h 2 ) 

∂Y 1 
∂y 

]

(4) 

here ρ , u and v are the mixture density, streamwise velocity 

nd transverse velocity, respectively. h is the mixture specific en- 

halpy and h 1 and h 2 are the partial specific enthalpies of each 

pecies of the binary mixture. Other mixture fluid properties are 

he mixture dynamic viscosity, μ, the mass diffusion coefficient, 

 , the thermal conductivity, λ, and the specific heat at constant 

ressure, c p . Furthermore, the energy equation is written as an en- 

halpy transport equation by using the relation λ∇ T = (λ/c p ) ∇ h −
 N 
i =1 (λ/c p ) h i ∇Y i . Note that since the problem is diffusion-driven, 

uid properties will vary as species and energy diffuse. 

These steady-state equations are valid as long as the 

ow is laminar and surface instabilities are negligible. 

avis et al. (2021) provide some guidance for oxygen-hydrocarbon 

ixtures at various ambient pressures. The quasi-parallel laminar 

egion may exist up to a distance from the splitter plate of the 

rder of O(10 −2 m). The mean flow velocity is fixed at 10 m/s 

nd the velocity difference between both streams is varied in 

he range of �u = 0 . 3 − 5 m/s to limit the maximum Reynolds

umber at L̄ = 0 . 01 m to Re L̄ = 10 , 0 0 0 . Re L̄ is defined as in

avis et al. (2021) 

e L̄ = 

ρG ̄L �u 

μG 

(5) 

here the subscript G refers to gas freestream values. Analogously, 

he subscript L will refer to liquid freestream values. 

With this analysis, one of the main goals is to show the exis- 

ence of a distinct two-phase behavior before hydrodynamic insta- 

ilities dominate. 

. Similarity transformation 

The system of partial differential equations (PDEs) describing 

he problem ( Eqs. (1) –(4) ) can be transformed into a system of or-

inary differential equations (ODEs) by using a proper similarity 

ariable, η. However, the transformation requires an intermediate 

tep due to variable density. The mapping follows (x, y ) → ( ̄x , z) →
. 

The first transformation is defined as 

¯
 = x ; z = 

∫ y 

ρdy ′ (6) 

0 

3 
here y ′ is a dummy variable for integration purposes and z 

s a density-weighted transverse coordinate following the so- 

alled Howarth-Dorodnitsyn transformation ( Williams, 2018 ). This 

ype of transformation was independently introduced in 1942 by 

orodnitsyn (1942) and later in 1948 by Howarth (1948) . Other au- 

hors followed with similar work ( Stewartson, 1949 ; Lees, 1956 ). 

As shown in Fig. 1 , the interface between the two phases is 

laced at y = 0 . To transform the original system of equations from 

x, y ) → ( ̄x , z) , the following relations between partial derivatives 

re obtained 

∂ 

∂x 
() = 

∂ 

∂ ̄x 
() + 

(∫ y 

0 

∂ρ

∂x 
dy ′ 

)
∂ 

∂z 
() (7) 

∂ 

∂y 
() = ρ

∂ 

∂z 
() (8) 

Defining the transformed transverse velocity, w , as 

 = ρv + u 

∫ y 

0 

∂ρ

∂x 
dy ′ (9) 

he velocity components can be related to the stream function for 

ompressible flow, �( ̄x , z) , as 

 = 

∂�

∂z 
; w = −∂�

∂ ̄x 
(10) 

Here, w does not have units of velocity and can be considered 

s a convenient variable in the solution process. 

This arrangement yields a system of PDEs in the ( ̄x , z) space in

erms of the compressible stream function, Eqs. (11) –(14) . Note the 

ontinuity equation, Eq. (11) , is identically satisfied. 

∂ 2 �

∂ ̄x ∂z 
− ∂ 2 �

∂ z∂ ̄x 
= 0 (11) 

∂�

∂z 

∂ 2 �

∂ ̄x ∂z 
− ∂�

∂ ̄x 

∂ 2 �

∂z 2 
= 

∂ 

∂z 

(
ρμ

∂ 2 �

∂z 2 

)
(12) 

∂�

∂z 

∂Y 1 
∂ ̄x 

− ∂�

∂ ̄x 

∂Y 1 
∂z 

= 

∂ 

∂z 

(
ρ2 D 

∂Y 1 
∂z 

)
(13) 

∂�

∂z 

∂h 

∂ ̄x 
− ∂�

∂ ̄x 

∂h 

∂z 
= 

∂ 

∂z 

(
ρλ

c p 

∂h 

∂z 

)
+ 

∂ 

∂z 

[(
ρ2 D − ρλ

c p 

)
(h 1 − h 2 ) 

∂Y 1 
∂z 

]

(14) 

After this intermediate step, the self-similar transformation is 

aken by defining the similarity variable, η, as in the Blasius so- 

ution for a flat plate ( White and Corfield, 2006 ), but where x is

ubstituted by x̄ and y is substituted by z (see Eq. (15) ). 

= 

z √ 

2 ̄x 
(15) 

The transformation from ( ̄x , z) → η requires the following rela- 

ions between partial derivatives 

∂ 

∂z 
( ) = 

1 √ 

2 ̄x 

∂ 

∂η
( ) (16) 

∂ 

∂ x 
( ) = 

∂ 

∂ x 
( ) − 1 

2 

η

x 

∂ 

∂η
( ) (17) 

here ¯̄x = x̄ = x . 

A self-similar solution exists if �/ 
√ 

x̄ , Y 1 and h depend only on 

. The following expressions are assumed, where 

= 

√ 

2 ̄x f (η) ; Y 1 = Y (η) ; h = h (η) (18) 

From Eq. (10) , it reads that 

 = 

df 

dη
= f ′ (η) ; w = 

1 √ 

2 ̄x 

(
η f ′ (η) − f (η) 

)
(19) 
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Fig. 1. Sketch of the mixing layer problem between a liquid stream and a gas stream. The liquid-gas interface or dividing streamline is assumed to be fixed at y = 0 m as 

discussed in Davis et al. (2021) . 

w  

d

d

s

(

(

(

3

i

i

a

t

m

t

G

a

P

r

l

t

f

s

l

η
t

a

d

w∫

i  

l

w

w

p

o  

i

 

d

E  

a

s

ρ

3

t

p

t

p

m

t

o

o

o  

fl

d

o

e

2

s

Z

w

Z

w

b

b

r

c

t

w

here the ( ) ′ operator applied to any variable a (i.e., a ′ ) means

ifferentiation of a with respect to η or da / d η. Second and third 

erivatives follow the same notation. For the sake of simplicity, 

ingle dependence on η is implicit in the equations to follow. 

Rearranging Eqs. (12) –(14) , a system of ODEs can be written as 

ρμ) f ′′′ + (ρμ) ′ f ′′ + f f ′′ = 0 (20) 

ρ2 D ) Y ′′ + (ρ2 D ) ′ Y ′ + fY ′ = 0 (21) 

ρλ

c p 

)
h 

′′ + 

(
ρλ

c p 

)
′ h 

′ + 

(
ρ2 D − ρλ

c p 

)
(h 1 − h 2 ) Y 

′′ 

+ 

[(
ρ2 D − ρλ

c p 

)
(h 1 − h 2 ) 

]
′ Y ′ + f h 

′ = 0 (22) 

.1. Evaluation of the transverse velocity 

The determination of the transverse velocity, v , across the mix- 

ng layer from the self-similar solution in variable-density mix- 

ng layers has been given little to no attention in previous works 

nd textbooks. Generally, the interest is only focused on solving 

he velocity profile in the main flow direction, together with the 

ixing profiles of other variables such as density and tempera- 

ure. Some works addressing this issue are those of Kennedy and 

atski (1994) and Libby and Liu (1968) . However, relations for v 

re presented without further development. On the other hand, 

ruett (1993) offers some insights in the process to develop such 

elations. Nevertheless, the analysis performed on the boundary 

ayer of an axisymmetric body complicates the final result. 

In the present study, a straightforward development of an equa- 

ion for v based on η and downstream location is presented in a 

orm also shown in Sirignano (2021) . The latter work develops a 

elf-similar model for mixing in a variable-density laminar shear 

ayer with imposed counterflow. 

Eqs. (8) and (16) provide a differential relation between y and 

for a fixed downstream position or constant x̄ which can be in- 

egrated to relate the transverse location to the similarity variable 

s 

 y = 

√ 

2 ̄x 

ρ
d η ; y = 

√ 

2 ̄x 

∫ η

0 

d η′ 
ρ(η′ ) = 

√ 

2 ̄x ̃ I (η) (23) 

here η′ is a dummy variable for integration purposes and 

˜ I (η) ≡
 η
0 

dη′ /ρ(η′ ) . 
By combining expressions of the transformed transverse veloc- 

ty, w , in ( x, y ) and ( ̄x , η) coordinates ( Eqs. (9) and (19) ), the fol-

owing relation is obtained 

 

√ 

2 ̄x = ρv 
√ 

2 ̄x + u 

√ 

2 ̄x 
∂z 

∂x 
= η f ′ − f (24) 

hich shows that w (and thus v ) are self-similar when multi- 

lied by the square root of x̄ or downstream position. In the previ- 

us equation, the equality 
∫ y 

0 
(∂ ρ/∂ x ) dy ′ = ∂ ( 

∫ y 
0 

ρdy ′ ) /∂ x = ∂ z/∂ x
s used. 
4 
Substitution of ∂ z / ∂ x in Eq. (24) is found by differentiating

y / dx, dz / dx and d z/d ̄x at constant y using Eq. (7) . 

dy 

dx 
= 0 = 

dy 

d ̄x 
+ 

1 

ρ

dz 

dx 
= 

˜ I 
d 

d ̄x 
( 
√ 

2 ̄x ) + 

√ 

2 ̄x 

ρ

dη

d ̄x 
+ 

1 

ρ

dz 

dx 
(25) 

dz 

dx 
= 

dz 

d ̄x 
+ 

dz 

dx 
→ 

dz 

d ̄x 
= 0 (26) 

dz 

d ̄x 
= 0 = 

√ 

2 ̄x 
dη

d ̄x 
+ η

d 

d ̄x 
( 
√ 

2 ̄x ) (27) 

Combination of Eqs. (25) and (27) yields a relation for dz / dx , 

q. (28) . This relation can be substituted back into Eq. (24) to find

n equation for the transverse velocity v as a function of self- 

imilar variables and downstream position, Eq. (29) . 

dz 

dx 
= 

(
η − ˜ I ρ

) d 

d ̄x 
( 
√ 

2 ̄x ) (28) 

v 
√ 

2 ̄x = 

˜ I ρ f ′ − f (29) 

.2. Comments on the thermodynamic model 

Another requirement needed to achieve similarity relates to the 

hermodynamic model used to evaluate fluid properties and trans- 

ort coefficients. For these variables to depend only on η, the 

hermodynamic model must ultimately depend on pressure, tem- 

erature (i.e., enthalpy) and mixture composition. The self-similar 

odel presented here relies on constant pressure everywhere in 

he domain, while temperature and mixture composition depend 

nly on η. 

The thermodynamic model implemented in this work is based 

n a volume-corrected Soave-Redlich-Kwong (SRK) cubic equation 

f state ( Lin et al., 2006 ), which is able to represent non-ideal

uid states. The volumetric correction is needed to obtain accurate 

ensity predictions of high-density fluids (i.e., liquids) because the 

riginal SRK equation of state ( Soave, 1972 ) presents liquid density 

rrors of up to 20% when compared to experimental values ( Yang, 

0 0 0; Prausnitz and Tavares, 2004 ). The modified SRK equation of 

tate is expressed in terms of the compressibility factor, Z , as 

 

3 + (3 C − 1) Z 2 + 

[
C(3 C − 2) + A − B − B 

2 
]
Z 

+ C (C 2 − C + A − B − B 

2 ) − AB = 0 (30) 

ith 

 = 

p 

ρRT 
; A = 

a (T ) p 

R 

2 
u T 

2 
; B = 

bp 

R u T 
; C = 

c(T ) p 

R u T 
(31) 

here a ( T ) is a temperature-dependent cohesive energy parameter, 

 represents a volumetric parameter related to the space occupied 

y the molecules and c ( T ) is a temperature-dependent volume cor- 

ection. R and R u are the specific gas constant and the universal gas 

onstant, respectively. The solution of this cubic equation provides 

he density of the fluid mixture, ρ . 

The volume-corrected SRK equation of state is used, together 

ith high-pressure correlations, to evaluate fluid properties and 
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a

E

ransport coefficients (e.g., viscosity) ( Poling et al., 2001; Chung 

t al., 1988; Leahy-Dios and Firoozabadi, 2007 ). Details on the de- 

elopment and implementation of this thermodynamic model can 

e found in Davis et al. (2021) . 

. Boundary conditions and interface matching relations 

The governing equations representing the non-ideal two-phase 

aminar mixing layer have been reduced to a system of ODEs, 

qs. (20) –(22) , which depends only on the similarity variable, η. 

o solve this system of equations, proper boundary conditions 

ust be imposed. These can be divided into freestream conditions 

or each individual fluid and interface matching relations between 

oth fluid streams. 

The self-similar transformation is defined such that the liquid- 

as interface, which is denoted by �, does not move ( V � = 0 ) and

s located at y = z = η = 0 . The justification for this approximation

as been shown by Davis et al. (2021) . Positive values of η de- 

ne the gas stream, while negative values of η represent the liquid 

tream. Following this definition, freestream boundary conditions 

or f, Y and h become 

f ′ (+ ∞ ) = u G ; Y (+ ∞ ) = Y G ; h (+ ∞ ) = h G (32)

nd 

f ′ (−∞ ) = u L ; Y (−∞ ) = Y L ; h (−∞ ) = h L (33)

At ± ∞ , both streams are pure components. Thus, if Y 1 is 

hosen to represent the pure gas species, Y G = 1 and Y L = 0 in

qs. (32) and (33) . 

The streamwise velocity component and the tangential stress 

re continuous across the interface. These conditions are expressed 

n the original space ( x, y ) as 

 g = u l = U � (34) 

g 

(
∂u 

∂y 

)
g 

= μl 

(
∂u 

∂y 

)
l 

(35) 

hich converts in the η space to 

f ′ g (0) = f ′ l (0) = U � (36) 

f ′′ 
l ( 0 ) 

f ′′ g ( 0 ) 
= 

( ρμ) g 

( ρμ) l 
(37) 

Therefore, f ′ is continuous across the interface while a jump in 

he second derivative, f ′′ , exists for ( ρμ) g 
 = ( ρμ) l . Another condi-

ion for f is obtained from the mass balance across the interface. 

ince the interface location is assumed to remain fixed, the net 

ass flux, ˙ ω , across the interface reads 

˙  = ( ρv ) g = ( ρv ) l (38) 

Eq. (38) is expressed in terms of f ( η) as 

˙  = − 1 √ 

2 ̄x 
f g (0) = − 1 √ 

2 ̄x 
f l (0) (39) 

ince ˜ I = 0 at the interface. This equation shows that f is also con- 

inuous across the interface (i.e., f g (0) = f l (0) = f (0) ). From this

elation, the transformed velocity evaluated at the interface corre- 

ponds to the mass flux across it, or w (0) = ˙ ω = − f (0) / 
√ 

2 ̄x . 

Finally, expressions for the species mass balance and energy 

alance at the interface are needed. Eqs. (40) and (41) show these 

elations in the ( x, y ) space, respectively. 

˙  (Y 1 ,g − Y 1 ,l ) = 

(
ρD 

∂Y 1 
∂y 

)
g 

−
(
ρD 

∂Y 1 
∂y 

)
l 

(40) 
5 
˙  (h g − h l ) = 

(
λ

c p 

∂h 

∂y 

)
g 

−
(

λ

c p 

∂h 

∂y 

)
l 

+ 

[(
ρD − λ

c p 

)
(h 1 − h 2 ) 

∂Y 1 
∂y 

]
g 

−
[(

ρD − λ

c p 

)
(h 1 − h 2 ) 

∂Y 1 
∂y 

]
l 

(41) 

Eqs. (40) and (41) are expressed in terms of f ( η), Y ( η) and h ( η)

s 

f (0) 
(
Y g (0) − Y l (0) 

)
= 

(
ρ2 DY ′ (0) 

)
g 
−

(
ρ2 DY ′ (0) 

)
l 

(42) 

f (0) 
(
h g (0) − h l (0) 

)
= 

(
ρλ

c p 
h 

′ (0) 
)

g 

−
(
ρλ

c p 
h 

′ (0) 
)

l 

+ 

[(
ρ2 D − ρλ

c p 

)
(h 1 − h 2 ) Y 

′ (0) 

]
g 

−
[(

ρ2 D − ρλ

c p 

)
(h 1 − h 2 ) Y 

′ (0) 

]
l 

(43) 

Local thermodynamic phase equilibrium is used to evaluate the 

nterface solution of the system of ODEs. That is, an equality in 

hemical potential for each species on either side of the interface 

s imposed. This condition is expressed through an equality in fu- 

acity for each species ( Soave, 1972; Poling et al., 2001 ), φi , as 

li (T l , p l , X li ) = φgi (T g , p g , X gi ) (44)

hich is a function of mixture temperature, pressure and compo- 

ition. Under constant pressure across the interface, phase equilib- 

ium can be expressed using the fugacity coefficient, �i ≡ φi / pX i , 

s 

 li �li = X gi �gi (45) 

here X i represents the mole fraction of species i . 

Note that liquid and gas compositions are only the same at the 

ixture critical point. Therefore, phase equilibrium shows that Y 

nd h are discontinuous across the interface, as well as other fluid 

roperties (e.g., density). 

Since the thickness of the interface is of the order of O(10 −9 

) ( Dahms and Oefelein, 2013; 2015a ) and diffusion layers in non- 

deal high-pressure conditions quickly reach thicknesses of the or- 

er of O(10 −6 m) ( Poblador-Ibanez and Sirignano, 2018; Davis 

t al., 2021 ), the interface thickness is neglected and tempera- 

ure is assumed to be continuous (i.e., T g (0) = T l (0) = T �). This

s a plausible assumption as long as the interface temperature is 

ell below the mixture critical temperature ( Dahms and Oefelein, 

013; 2015b ). For the type of mixture analyzed in the present 

ork, the problem configuration (i.e., ambient pressure and tem- 

eratures of each phase) result in an interface equilibrium state 

ar away from the mixture critical point as reported in Fig. 5 of 

oblador-Ibanez and Sirignano (2018) . Moreover, the quick relax- 

tion of the interface solution either in time ( Poblador-Ibanez and 

irignano, 2018 ) or in space ( Davis et al., 2021 ) supports the local

hermodynamic equilibrium assumption. The difference between 

he two mass fluxes crossing the interface in each direction can 

e considered to be small compared to either flux as shown in 

oblador-Ibanez and Sirignano (2018) , which also justifies the use 

f local phase equilibrium. 

. Solution method 

The system of ODEs, Eqs. (20) –(22) , must be solved numerically. 

o avoid solving a third-order differential equation, Eq. (20) is split 

nto two equations: a first-order differential equation to solve for f 

nd a second-order differential equation to solve for f ′ . Therefore, 

q. (20) is rewritten as 
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ρμ) g ′′ 1 + (ρμ) ′ g ′ 1 + g 2 g 
′ 
1 = 0 (46) 

 

′ 
2 = g 1 (47) 

here the new variables are g 1 = f ′ and g 2 = f . 

Eqs. (21) , (22), (46) and (47) are discretized using a second- 

rder finite difference scheme and solved using a tri-diagonal ma- 

rix solver. The asymptotic behaviors at + ∞ and −∞ are well rep- 

esented with a numerical range for the similarity variable given 

y −0 . 5 ≤ η ≤ 0 . 5 . Since the system of equations is highly cou-

led, some iterations are needed before reaching a converged solu- 

ion. A mesh size of �η = 1 . 5625 × 10 −4 kg/(m 

5/2 ) provides a grid-

ndependent solution. 

The interface solution is also updated at every iteration. The 

treamwise momentum matching conditions, Eqs. (36) and (37) , 

re combined numerically to solve for U � or f ′ (0). On the other 

and, Eqs. (42) , (43) and (45) form a closed system that can be

olved at every iteration in terms of the interface temperature. The 

olution of this system of equations provides the interface values 

or f (0), Y g (0), Y l (0), h g (0) and h l (0). More information on this inter-

ace algorithm is provided in Poblador-Ibanez and Sirignano (2018) . 

. Results 

The system of ODEs has been solved for the analyzed cases 

rom Davis et al. (2021) , where numerical results for a non-ideal 

wo-phase laminar mixing layer using the system of partial differ- 

ntial equations, Eqs. (1) –(4) , are provided. 

Oxygen is chosen to be the pure gas species, while the liquid 

onsists of pure n -decane. Mass fraction freestream conditions cor- 

espond to those discussed in Section 4 , with Y 1 representing the 

ure gas species composition. Thus, Y G = 1 and Y L = 0 . Tempera-

ure (i.e., enthalpy) freestream conditions are T (+ ∞ ) = T G = 550 K

nd T (−∞ ) = T L = 450 K. Using the thermodynamic model, h G and

 L are evaluated. Reynolds number, Re L̄ , is based on gas properties 

nd the relative velocity between the two free streams. To keep the 

oundary-layer approximation valid, freestream conditions for the 

treamwise velocity vary among the different analyzed pressures. 

heir values are summarized in Table 1 . 

In Section 6.1 , the mixing layer solution from the system of 

DEs is given for the four pressure cases from Table 1 and com- 

ared with the solution from the system of PDEs obtained in 

avis et al. (2021) for the same configurations. Then, in Section 6.2 , 

he interface equilibrium solution is compared between both ap- 

roaches. Lastly, in Section 6.3 , the evolution of the mass, mo- 

entum and thermal mixing layer thicknesses is determined and 

 generalization of their evaluation is made to avoid solving ei- 

her the system of partial differential equations or the self-similar 

odel. 

.1. Mixing layer profiles 

For visualization purposes, the results are non-dimensionalized 

y the liquid freestream conditions to provide a consistent compar- 

son between different cases. The non-dimensional similarity vari- 
able 1 

reestream conditions for the streamwise component of the velocity field, u , at dif- 

erent ambient pressures. These values satisfy Re L̄ = 10 , 0 0 0 at L̄ = 0 . 01 m for a 

xed mean velocity of 10 m/s as the freestream gas density and viscosity change 

ith pressure ( Davis et al., 2021 ). 

p = 10 bar p = 50 bar p = 100 bar p = 150 bar 

u G (m/s) 7.673 9.525 9.755 9.830 

u L (m/s) 12.327 10.475 10.246 10.170 

t

h

f

t

t

n

a

p

m

6 
ble and f function are, respectively, 

∗ = 

η√ 

ρL μL 

u L 

; f ∗ = 

f √ 

ρL μL u L 

(48) 

The non-dimensional second derivative of f (or velocity gradi- 

nt) follows that 

f ′′ = 

d 2 f 

dη2 
= 

√ 

ρL μL u L 
ρL μL 

u L 

d 2 f ∗

d η∗2 
; f ′′∗ = 

f ′′ √ 

u 3 
L 

ρL μL 

(49) 

Any other variable, φ, is made dimensionless by dividing by the 

iquid freestream value, φL (e.g., h ∗ = h/h L or f ′∗ = f ′ /u L ). Note that

 is already non-dimensional. Furthermore, for continuous vari- 

bles across the interface, such as f ′ and T , the following non- 

imensional definitions are made to obtain distributions ranging 

rom 0 to 1, being 1 the largest value of the variable, 

T (η) = 

T (η) − T L 
T G − T L 

; θu ( η) = 

f ′ ( η) − u G 

u L − u G 

(50) 

The transformed transverse velocity, w , is not self-similar since 

t depends on x̄ and η (see Eq. (19) ). However, as stated in 

ection 3.1 , w becomes a function of η only when multiplied by 

he square root of x̄ . Thus, ˆ w = w 

√ 

2 ̄x = η f ′ − f is self-similar. To 

btain a non-dimensional ˆ w for representation purposes, the re- 

ults are scaled as ˆ w 

∗ = ˆ w / 
√ 

ρL μL u L . 

Fig. 2 presents the non-dimensional solution of f ∗, f ′ ∗ and f ′′ ∗. 

ig. 2 b shows how the interface velocity tends to be very close 

o the freestream liquid velocity. That is, the liquid phase is much 

ore dense and viscous than the gas phase and it becomes hard 

or the slower gas stream to slow the liquid stream down. The so- 

utions of Y and h ∗ are plotted in Figs. 3 and 4 . 

As pressure increases well above the liquid critical pressure, 

he dissolution of the lighter gas species into the liquid phase is 

nhanced ( Jordà-Juanós and Sirignano, 2015; Poblador-Ibanez and 

irignano, 2018 ) (see Fig. 3 a). This generates sharper variations in 

he fluid properties within the liquid phase (see Fig. 5 ), which can 

e responsible for the change in behavior seen in the liquid ve- 

ocity gradient. As seen in Fig. 2 c, the velocity gradient behaves 

lmost linearly within the liquid momentum mixing layer at sub- 

ritical pressures (i.e., 10 bar) where liquid density and viscosity 

emain fairly constant. However, as pressure increases well above 

he critical pressure of n -decane ( p c = 21 . 03 bar), the velocity gra-

ient shows an inflection point where its rate of change experi- 

nces a transition from a stronger deceleration of the liquid near 

he interface to a slower deceleration in a larger portion of the 

ixing layer. These two differentiated regions match the region 

here density and viscosity are experiencing the largest drop to- 

ards interface values. That is, the less dense and viscous liquid 

hase is decelerated much more easily by the slower gas. 

The specific mixture enthalpy distribution is consistent with the 

ncrease of temperature in the liquid phase and the decrease of 

emperature in the gas phase. However, a wavy distribution is ob- 

erved at 10 bar. A discussion based on a thermodynamic analysis 

s provided in Poblador-Ibanez and Sirignano (2018) . Considering a 

ass element containing the whole mixing layer (liquid and gas), 

he mixing process is just an internal phenomenon. Negligible net 

eat flux, Q , crosses the boundaries of the mass element. Therefore 

or a constant pressure process, �H = Q| p = 0 . To compensate for 

he increase in enthalpy, H , in the liquid phase, the gas phase en- 

halpy must decrease accordingly. At 10 bar, this requirement can- 

ot be solely satisfied with a monotonic enthalpy distribution. 

Fig. 5 presents distributions for the non-dimensional density 

nd viscosity for both phases. As previously mentioned, these fluid 

roperties present sharper variations as pressure increases. As the 

ixture critical point is approached, both liquid and gas look more 
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Fig. 2. Solution of the self-similar system of ordinary differential equations. (a) f ∗; (b) f ′ ∗; (c) f ′′ ∗ in the liquid phase; (d) f ′′ ∗ in the gas phase. 

Fig. 3. Solution of the self-similar system of ordinary differential equations. (a) Y in the liquid phase; (b) Y in the gas phase. 

7 
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Fig. 4. Solution of the self-similar system of ordinary differential equations. (a) h ∗ in the liquid phase; (b) h ∗ in the gas phase. 

Fig. 5. Solution of the self-similar system of ordinary differential equations. (a) ρ∗; (b) μ∗ . 

Fig. 6. ˆ w 

∗ profiles from the solution of the self-similar system of ordinary differen- 

tial equations. 

a

v

l

b

t  

t

v

d  

w  

t

d  

i

p

j

(

t

p

P

x  

f

d

m

s

p

t

like. A discussion on the behavior of the viscosity profiles is pro- 

ided in Davis et al. (2021) . 

Distributions of the non-dimensional modified transverse ve- 

ocity, ˆ w 

∗, are plotted in Fig. 6 . Information on the phase change 
8 
ehavior at the interface can be extracted from these results. At 

he interface, w = ρv from Eq. (9) . Therefore, w > 0 or ˆ w > 0 at

he interface implies that the transverse velocity is also positive, 

 > 0. That is, net vaporization at the interface is occurring un- 

er the assumption that V � = 0 . On the other hand, w < 0 or

ˆ  < 0 implies v < 0 or net condensation. As inferred from Eq. (19) ,

he strength of the mass flux across the interface decreases with 

ownstream distance as 1 / 
√ 

x̄ or 1 / 
√ 

x . At 10 and 50 bar, net vapor-

zation is occurring, while net condensation dominates at higher 

ressures. This interface behavior and its implications on the liquid 

et breakup are further discussed in Poblador-Ibanez and Sirignano 

2018, 2019) . 

The agreement between the solution of the self-similar sys- 

em of ODEs and the system of PDEs is initially tested by com- 

aring various profiles of different variables of interest. First, the 

DE solution from Davis et al. (2021) at a downstream position of 

 = 0 . 01 m has been mapped from the ( x, y ) space to the η space

or all four pressure cases. 

Figs. 7 and 8 present these results for the non-dimensional 

istribution of continuous variables (i.e., θu and θ T ), where both 

ethods are seen to concur for all analyzed pressures. As pres- 

ure increases and the gas dissolves more easily into the liquid 

hase, the interface velocity and temperature deviate further from 

he freestream liquid values. That is, as the liquid and gas phases 
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Fig. 7. Comparison between the solution of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations (PDE) at 

x = 0 . 01 m mapped from ( x, y ) to η. (a) θu in the liquid phase; (b) θu in the gas phase. 

Fig. 8. Comparison between the solution of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations (PDE) at 

x = 0 . 01 m mapped from ( x, y ) to η. (a) θ T in the liquid phase; (b) θ T in the gas phase. 
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ome closer together, the liquid loses inertia and the gas stream 

an slow it down more. Furthermore, the enhanced dissolution of 

he gas into the liquid increases the heat flux by diffusion into the 

iquid, raising its temperature near the interface. 

Fig. 9 presents a comparison of ˆ w 

∗ at 150 bar between the ODE 

olution and the PDE solution at x = 0 . 01 m. Two important is-

ues can be observed in this figure. First, an offset exists between 

he ODE and the PDE profiles, which is related to slightly differ- 

nt interface equilibrium solutions, as shown in Section 6.2 . Both 

he transverse velocity, v , and the modified transverse velocity, w , 

re variables with very small magnitudes compared to other flow 

arameters (e.g., temperature and density). Thus, relatively small 

ifferences of these variables at the interface can cause substantial 

elative errors in v and w . The evolution of v or w ultimately de-

end on a first-order ODE, with the interface value acting as the 

nly needed boundary condition. When introducing a numerical 

ffset as the difference between w �, ODE and w �, PDE (or being the 

ame the difference between mass flux predictions at the interface, 

˙  ODE and ˙ ω PDE ), the profiles are seen to collapse onto each other. 

econd, the PDE solution has some problems predicting the cor- 

ect evolution of w in the liquid phase. From the ODE, w should 

e monotonically decreasing as η∗ → −∞ . However, the PDE so- 
9 
ution predicts a bump before decreasing. Refining the mesh used 

n Davis et al. (2021) mitigates the problem and the PDE solution 

ends asymptotically to the ODE solution. This issue has been iden- 

ified as a numerical problem, but proper analysis of the error is 

ut of scope of the present work. 

Furthermore, the opposite mapping direction has been tested as 

ell. That is, the ODE solution is mapped from the η space to the 

 x, y ) space. Again, the main goal is to assess the validity of both

pproaches and identify numerical errors that might have arisen 

rom the PDE-to-ODE domain mapping. Figs. 10–14 show the trans- 

erse profiles of different variables of interest ( u, T, Y 1 , ρ and v ) at

50 bar at various downstream locations well into the self-similar 

egion of the mixing layer. According to Davis et al. (2021) , the 

ixing layer approximation with the boundary layer equations be- 

omes valid for the analyzed configuration at 150 bar at Re x ≈ 60 

n the gas mixing layer and Re x ≈ 240 in the liquid mixing layer, 

s defined by Eq. (5) . This corresponds to a streamwise distance 

rom the splitter plate of 0.06 mm and 0.24 mm, respectively. Fol- 

owing this restriction, the analyzed locations are x = 1 mm, x = 5 

m and x = 10 mm. 

The profiles shown in Figs. 10–14 tend to collapse onto each 

ther although some small deviations are seen depending on the 
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Table 2 

Comparison of the interface velocity, U � , equilibrium temperature, T � , and equilibrium mixture specific enthalpies on each phase, h g and h l , between the solutions obtained 

using the system of ordinary differential equations (ODE) and the system of partial differential equations (PDE) ( Davis et al., 2021 ). 

p (bar) U �,ODE (m/s) U �,PDE (m/s) T �,ODE (K) T �,PDE (K) h g,ODE (kJ/kg) h g,PDE (kJ/kg) h l,ODE (kJ/kg) h l,PDE (kJ/kg) 

10 12.173 12.171 451.397 451.497 488.874 489.153 332.414 332.696 

50 10.389 10.389 457.547 457.610 444.511 444.624 355.320 355.498 

100 10.182 10.181 461.276 461.326 437.012 437.093 372.448 372.589 

150 10.114 10.114 464.095 464.121 434.971 435.013 386.550 386.624 

Table 3 

Comparison of the interface equilibrium composition on each phase, Y g, O 2 and Y l, O 2 ,and equilibrium mixture densities on each phase, ρg and ρl , between the solutions 

obtained using the system of ordinary differential equations (ODE) and the system of partial differential equations (PDE) ( Davis et al., 2021 ). 

p (bar) Y g, O 2 ,ODE Y g, O 2 ,PDE Y l, O 2 ,ODE Y l, O 2 ,PDE ρg,ODE (kg/m 

3 ) ρg,PDE (kg/m 

3 ) ρl,ODE (kg/m 

3 ) ρl,PDE (kg/m 

3 ) 

10 0.6059 0.6052 0.0059 0.0059 12.406 12.413 593.638 593.529 

50 0.8405 0.8403 0.0339 0.0339 47.930 47.932 580.481 580.403 

100 0.8712 0.8711 0.0716 0.0717 91.434 91.434 571.899 571.833 

150 0.8714 0.8713 0.1126 0.1126 134.362 134.362 563.925 563.888 

Fig. 9. Comparison of ˆ w 

∗ at 150 bar between the solution of the system of ordinary 

differential equations (ODE) and the solution of the system of partial differential 

equations (PDE) at x = 0 . 01 m mapped from ( x, y ) to η. 
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Table 4 

Comparison of the net mass flux across the interface, ˙ ω , at the downstream loca- 

tion x = x̄ = 0 . 01 m between the solutions obtained using the system of ordinary 

differential equations (ODE) and the system of partial differential equations (PDE) 

( Davis et al., 2021 ). 

p (bar) ˙ ω ODE (kg/m 

2 s) ˙ ω PDE (kg/m 

2 s) E ˙ ω (%) 

10 0.0791 0.0760 4.079 

50 0.00497 0.00488 1.844 

100 -0.0565 -0.0539 4.824 

150 -0.114 -0.109 4.587 
ariable and the fluid phase analyzed. The streamwise velocity and 

emperature profiles agree almost perfectly in both phases, but the 

ass fraction and density profiles deviate slightly. 

Fig. 14 presents the transverse velocity profiles evaluated using 

q. (29) . A mismatch between the ODE and the PDE solutions ex- 

st, which is easily observed in the profiles at x = 1 mm due to the

arger magnitude of v at this location. Following what has been 

ommented in previous paragraphs, small differences in the inter- 

ace solution between the ODE and the PDE models are responsible 

or this mismatch. However, the profiles from both solutions evolve 

n a similar manner. 

The results shown in Figs. 7–14 suggest that the non-ideal two- 

hase laminar mixing layer equations can be represented with a 

elf-similar system of equations even though they are coupled to a 

omplex thermodynamic model involving a cubic equation of state, 

igh-pressure correlations used to evaluate transport properties, 

nd non-ideal thermodynamic principles. To further compare the 

wo approaches, Section 6.2 examines the interface solution ob- 

ained with the system of ODEs and the steady interface solution 

btained far downstream of the splitter plate (i.e., x = 0 . 01 m) with

he system of PDEs. 

.2. Interface equilibrium solution 

This section compares the interface equilibrium solution ob- 

ained with the self-similar model with the results shown in 
10 
avis et al. (2021) obtained with the mixing layer equations. To 

ssess the performance of the self-similar system of equations, the 

rror of a given variable 
 between the solution of the ODE sys- 

em and the PDE system is defined as 

 
 = 

| 
ODE − 
PDE | 
| 
PDE | (51) 

epresenting a relative deviation error from the PDE solution. 

The interface values of different variables of interest ( U �, T �, 

nterface composition, etc.) obtained from the ODE and PDE so- 

utions are shown in Tables 2–4 . A very good agreement is seen 

or all variables except for the mass flux across the interface. Thus, 

elative errors are not provided when the error is a fraction of a 

ercent. 

The larger errors observed when comparing the mass flux 

cross the interface at a given location (see Table 4 ) are of the

rder of 4–5% for 10, 100 and 150 bar while they are under 2% 

or the 50 bar case where the magnitude of the mass flux is the 

mallest. Nevertheless, the transition from net vaporization to net 

ondensation is still well captured. 

Sensitivity issues might arise when evaluating ˙ ω . Even though 

he relative errors in interface temperature, composition, etc. are 

ear 0%, the magnitude of ˙ ω itself is very small and easily per- 

urbed by a small change in the other variables. This issue is 

hen reflected in the transverse velocity profiles, as discussed in 

ection 6.1 and seen in Figs. 9 and 14 , and might be one of the

ain causes of the small mismatch between the ODE and the PDE 

esults when comparing mixing profiles across the mixing layer. 

.3. Mixing layer thickness 

Discussion in prior subsections addressed the similarity of so- 

utions at differing downstream positions for a given problem con- 

guration. The similarity between cases with differing constraints 

s discussed in this section. 
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Fig. 10. Comparison between the solution at 150 bar of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations 

(PDE) mapped from η to ( x, y ). (a) u in the liquid phase; (b) u in the gas phase. 

Fig. 11. Comparison between the solution at 150 bar of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations 

(PDE) mapped from η to ( x, y ). (a) T in the liquid phase; (b) T in the gas phase. 
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The self-similar solution can provide information on the ex- 

ct evolution of the mixing layer thickness. This is true for sim- 

ler analyses, such as the self-similar solution of incompressible 

ow over a flat plate (a.k.a., the Blasius equation) ( White and Cor- 

eld, 2006 ). However, semi-empirical formulas are usually pro- 

ided to estimate boundary layer or mixing layer thicknesses for 

ore complex flows, such as compressible flows, with different 

oundary conditions ( White and Corfield, 2006 ). These equations 

ely on many flow parameters and are not as accurate as obtaining 

he mixing layer thickness directly from the similarity solution of 

he specific constraints. 

A more accurate approach is presented in this paper, which cov- 

rs variable density flows under non-ideal conditions. It relies on 

olving the self-similar system of equations coupled with a non- 

deal thermodynamic model. It is not as simple to implement as 

ther semi-empirical models, but as discussed later, some general- 

zation is possible. To evaluate the layer thickness on each side of 

he interface for mass, momentum and energy mixing regions, the 

ollowing non-dimensional parameters are defined 

∗
Y,l (η) = 

Y l (0) − Y (η) 

Y l ( 0) − Y L 
; θ ∗

Y,g ( η) = 

Y ( η) − Y g (0) 

Y G − Y g ( 0) 
(52) 
c

11 
∗
u,l (η) = 

U � − u (η) 

U � − U L 

; θ ∗
u,g (η) = 

u (η) − U �

U G − U �
(53) 

∗
T,l (η) = 

T � − T (η) 

T � − T L 
; θ ∗

T,g (η) = 

T (η) − T �
T G − T �

(54) 

here all profiles vary from 0 to 1 going from the interface to the 

reestream condition. The mixture composition is used to analyze 

he mass mixing layer, while the streamwise velocity represents 

he momentum mixing layer. For the energy mixing layer, temper- 

ture has been used since it is a more representative variable than 

nthalpy. That is, the thermal mixing layer is represented, sepa- 

ately from composition influence on the enthalpy. 

Davis et al. (2021) report the non-similarity across different 

roblem constraints. However, when the proper fluid properties 

re used to non-dimensionalize the similarity variable and the 

ixing profiles, the thickness of the mixing layers almost col- 

apse onto each other for different configurations. The analyzed 

ases are defined in Table 5 . This is shown in Figs. 15–17 . The

rofiles may also be nearly self-similar, although, in general, the 

ariations in the behavior of the selected thermodynamic model 

reates different profiles as the problem configuration changes. 
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Fig. 12. Comparison between the solution at 150 bar of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations 

(PDE) mapped from η to ( x, y ). (a) Y 1 in the liquid phase; (b) Y 1 in the gas phase. 

Fig. 13. Comparison between the solution at 150 bar of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations 

(PDE) mapped from η to ( x, y ). (a) ρ in the liquid phase; (b) ρ in the gas phase. 

Fig. 14. Comparison between the solution at 150 bar of the system of ordinary differential equations (ODE) and the solution of the system of partial differential equations 

(PDE) mapped from η to ( x, y ). (a) v in the liquid phase; (b) v in the gas phase. 

12 
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Fig. 15. Mass mixing layer thickness for different pressures, freestream velocities, freestream temperatures and mixture components. See Table 5 for reference. (a) liquid 

phase; (b) gas phase. 

Fig. 16. Momentum mixing layer thickness for different pressures, freestream velocities, freestream temperatures and mixture components. See Table 5 for reference. (a) 

liquid phase; (b) gas phase. 

Fig. 17. Thermal mixing layer thickness for different pressures, freestream velocities, freestream temperatures and mixture components. See Table 5 for reference. (a) liquid 

phase; (b) gas phase. 
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Table 5 

Analyzed cases for the evaluation of the mixing layer thickness model. Cases A-D 

correspond to those analyzed in Davis et al. (2021) . 

Case Mixture p (bar) u G (m/s) u L (m/s) T G (K) T L (K) 

A O 2 / C 10 H 22 10 7.673 12.327 550 450 

B O 2 / C 10 H 22 50 9.525 10.475 550 450 

C O 2 / C 10 H 22 100 9.755 10.246 550 450 

D O 2 / C 10 H 22 150 9.830 10.170 550 450 

E O 2 / C 10 H 22 100 9.755 10.246 590 490 

F O 2 / C 10 H 22 150 9.830 10.170 510 410 

G O 2 / C 8 H 18 100 9.755 10.246 550 450 
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Table 7 

Values of the non-dimensional similarity variables for mass, momentum and ther- 

mal mixing layer thicknesses obtained from the fitted polynomial. A range of values 

is also provided for the analyzed cases, together with a maximum relative deviation 

error from the polynomial value. 

Mixing layer η∗
poly 

η∗
min 

η∗
max �η∗ , max (%) 

η∗
Y,l 

−2.672 −2.785 −2.589 4.229 

η∗
Y,g 2.515 2.459 2.576 2.425 

η∗
u,l 

−2.498 −2.561 −2.410 3.523 

η∗
u,g 2.548 2.510 2.579 1.491 

η∗
T,l 

−2.541 −2.559 −2.533 0.708 

η∗
T,g 2.683 2.564 2.724 4.435 
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he non-dimensional similarity variables used to plot the mass 

ixing layer are defined from freestream conditions for each 

hase as 

∗
Y,l = 

η√ 

ρ2 
L 

D L 
u L 

; η∗
Y,g = 

η√ 

ρ2 
G 

D G 
u G 

(55) 

nd the non-dimensional similarity variables for the momentum 

ixing layer and the thermal mixing layer are defined, respec- 

ively, as 

∗
u,l = 

η√ 

ρL μL 

u L 

; η∗
u,g = 

η√ 

ρG μG 

u G 

(56) 

nd 

∗
T,l = 

η√ 

ρL λL 

c p L u L 

; η∗
T,g = 

η√ 

ρG λG 

c p G u G 

(57) 

The mixing layer thickness, δ, is obtained by using Eq. (23) . 

= 

√ 

2 ̄x ̃ I (η) just represents the transverse coordinate evaluated at 

he η value defining the limit of the mixing layer. This limit is ob- 

ained from Eqs. (55) –(57) , depending on the mixing layer being 

valuated (i.e., mass, momentum or thermal). Note that the mix- 

ng layer thickness still evolves as a function of 
√ 

x whether the 

uid experiences ideal or real conditions. 

The diffusion layer thickness is defined at the location where θ ∗

s 99% of the difference between the freestream condition and the 

nterface value. Using this definition, an exact value for the non- 

imensional similarity variable, η∗, can be obtained for each case. 

ogether with the ρ( η) distribution obtained from the solution of 

he self-similar system of equations, the evaluation of δ is straight- 

orward and it is an exact representation of the flow evolution un- 

er the self-similar analysis. However, this approach still depends 

n the solution of Eqs. (20) –(22) coupled with a thermodynamic 

odel and does not yield an immediate estimate of the mixing 

ayer thickness. 

In view of the quasi-collapse of the location where the mix- 

ng layer ends and the reasonably similar diffusion profiles, the 

ollowing approach is suggested. The main goal is to reduce the 

omplexity of the exact evaluation of the mixing layer thickness 
Table 6 

Coefficients of the polynomial fit of θ ∗
Y,l 

(η∗
Y,l 

) , θ ∗
Y,g (η

∗
Y,g ) , θ

Polynomial θ ∗
Y,l 

(η∗
Y,l 

) θ ∗
Y,g (η

∗
Y,g ) θ ∗

u,l 
(η∗

u,l 

p 1 × 10 4 0.15167 0.19023 −3.2938

p 2 × 10 4 −4.23064 −4.66887 −78.062

p 3 × 10 3 −4.90381 4.69201 −78.530

p 4 × 10 2 −3.01070 −2.41875 −43.667

p 5 × 10 2 −10.1995 6.30927 −146.37

p 6 × 10 1 −1.74246 −0.56551 −30.289

p 7 × 10 1 −1.10601 −0.41711 −38.452

p 8 × 10 1 −1.44243 −1.40570 −30.582

p 9 × 10 1 −7.79459 8.99477 −18.887

p 10 × 10 4 −5.29066 −0.24932 49.3394

14 
o a simpler model relying on freestream conditions and interface 

roperties, coupled only with an equation of state. Therefore, it is 

o longer needed to solve the system of ODEs and the diffusion 

rocess within the mixing layer, as long as the interface solution 

s already known (e.g., it could be possible to tabulate interface 

olutions based on the thermodynamic model and problem config- 

ration). 

A polynomial of degree 9 is fitted using a least-squares method 

mong the data defining the distributions of mass fraction, velocity 

nd temperature within the mixing layer for each case. That is, the 

ollowing function is used to represent the diffusion profiles 

p(η∗) = 

n =10 ∑ 

i =1 

p i η
∗n −i 

(58) 

here p ( η∗) represents θ ∗
Y,l 

(η∗
Y,l 

) , θ ∗
Y,g 

(η∗
Y,g 

) , θ ∗
u,l 

(η∗
u,l 

) , θ ∗
u,g (η

∗
u,g ) , 

∗
T,l 

(η∗
T,l 

) or θ ∗
T,g 

(η∗
T,g 

) . The polynomial reasonably predicts the dif- 

usion profiles with the exception of the gas temperature profile 

nd the liquid streamwise velocity profile, where larger variations 

re observed (see Figs. 15–17 ). The coefficients of Eq. (58) to pre- 

ict each distribution are given in Table 6 . 

A representative value of η∗ defining the mixing layer thick- 

ess for all scenarios is obtained from the polynomial fitting of 

ach profile (i.e., where each polynomial profile reaches 99% of 

he freestream value). Table 7 provides information about these 

alues for each non-dimensional similarity variable, as well as a 

ange of observed values in all cases. Varying pressure, tempera- 

ure freestream values, freestream velocities and mixture compo- 

ents resulted in very similar η∗ values, with maximum relative 

eviations, �, from the polynomial solution below 5%. 

Based solely on the freestream conditions and the interface 

roperties, a distribution in terms of the similarity variable, η, can 

e obtained for temperature and mass fraction. Using an equation 

f state, such as the volume-corrected SRK equation of state, a dis- 

ribution for density or ρ( η) is found. The values for η∗ obtained 

ith the fitted polynomials define the integration limit of Eq. (23) ; 

herefore, the equation can be solved and an estimate for the mix- 

ng layer thickness is obtained. 
∗
u,l 

(η∗
u,l 

) , θ ∗
u,g (η

∗
u,g ) , θ

∗
T,l 

(η∗
T,l 

) and θ ∗
T,g (η

∗
T,g ) . 

) θ ∗
u,g (η

∗
u,g ) θ ∗

T,l 
(η∗

T,l 
) θ ∗

T,g (η
∗
T,g ) 

2 0.21758 0.10990 1.02187 

0 −5.33430 2.69978 −26.3374 

2 5.33306 2.92476 28.3791 

6 −2.70735 1.87074 −16.4236 

8 6.69482 7.86786 54.0947 

1 −0.37532 2.17118 −9.66246 

0 −1.37345 3.23844 7.32169 

8 0.29545 −0.27706 −0.41950 

5 7.85479 −9.08996 4.50979 

 0.27385 −3.26408 −4.58044 
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Table 8 

Maximum relative deviations from the exact ODE solution within the diffusion layer using the fitted polynomial together 

with freestream conditions and interface properties to solve for Y ( η), u ( η), T ( η) and, coupled with the volume-corrected SRK 

equation of state, ρ( η). For the mass fraction, the maximum absolute deviation is considered. 

Case �Y l , max (%) �Y g , max (%) �u l , max (%) �u g , max (%) �T l , max (%) �T g , max (%) �ρl , max (%) �ρg , max (%) 

A 0.0153 3.1645 0.1563 0.3438 0.0229 2.3583 0.0044 4.3184 

B 0.0345 0.4553 0.0529 0.0228 0.0145 0.2429 0.0546 0.5676 

C 0.1082 0.0438 0.0031 0.0157 0.0089 0.3398 0.1200 0.3725 

D 0.1652 0.3640 0.0362 0.0190 0.0292 0.4943 0.1355 0.6826 

E 0.1879 0.3263 0.0198 0.0397 0.0083 1.1313 0.2992 1.3712 

F 0.5118 0.1326 0.0267 0.0250 0.0400 1.5627 0.3429 1.7818 

G 0.2575 0.1795 0.0107 0.0430 0.0090 0.7723 0.3439 0.9377 

Fig. 18. Comparison of the evaluation of mixing layer thickness between the exact solution of the ODE system and the approximate method based on the fitted polynomial. 

(a) liquid phase; (b) gas phase. 
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Fig. 19. Relative deviation error from the exact ODE solution of mixing layer thick- 

ness for the different mixing layers on each phase. 
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Table 8 shows the maximum deviation errors between the ex- 

ct solution obtained from the system of ODEs and the approx- 

mate diffusion profiles obtained from the polynomial fit. Rela- 

ive errors are provided for streamwise velocity, temperature and 

ensity solutions, while absolute errors are provided for the mass 

raction profiles. Errors are seen to be limited well below 5% for 

he analyzed cases, being negligible in some scenarios. Note the 

mall error in estimating the velocity profile. The profiles in the 

as phase collapse almost perfectly, thus generating small devia- 

ions between exact solutions and estimated values. This situation 

lso happens for the liquid temperature profile. However, the ve- 

ocity profiles in the liquid phase showed greater variations be- 

ween each other. Nevertheless, the interface streamwise velocity 

ends to be very close to the liquid freestream velocity for all an- 

lyzed cases. Therefore, the magnitude errors between the exact 

olution and the polynomial estimate are very small even though 

∗
u,l 

profiles do not collapse onto each other. 

The difference in the evaluation of the integral from Eq. (23) or 
˜ 
 (η) , i.e., whether the exact solution of the ODE system or the 

pproximate method is used, causes different mixing layer thick- 

esses. Fig. 18 shows the value of this integral where 99% of the 

reestream value is obtained using both approaches. Overall, esti- 

ated values are in good agreement with the ODE solution. The 

elative deviation error of the mixing layer thickness value from 

he exact ODE solution is shown in Fig. 19 . In general, errors are

mall and below 2%. However, some estimates present higher er- 

ors, but still below 5%. 

Information on the mixing layer thickness can be directly ob- 

ained from Fig. 18 . As previously mentioned, the magnitude of 
˜ 
 (η) is used to estimate the mixing layer thickness at any down- 

tream location as δ = 

√ 

2 ̄x ̃ I (η) . It is interesting to note that while 
15 
he thermal mixing layer is always larger in the gas phase, the mo- 

entum mixing layer dominates by a larger factor in the liquid 

hase. In both phases, the mass mixing layer is the smallest. 

The effects of increasing pressure on the mixing layer thick- 

ess are shown through cases A-D. The gas becomes more dense 

s pressure increases, reducing diffusivity. Thus, the gas mixing 

ayer becomes thinner at larger pressures. On the other hand, the 

ncreased solubility of the gas into the liquid when pressure in- 

reases widens the momentum and thermal mixing layers in the 

iquid phase. 
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Fig. 20. Mass, momentum and thermal gas mixing layer thickness evolution for 

case D (see Table 5 ). A comparison between the ODE solution, the polynomial ap- 

proximation and the PDE solution is presented. 
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Fig. 20 presents the evolution of the mass, momentum and 

hermal gas mixing layers for case D (i.e., a very high pressure 

ase). The mixing layer thickness is computed using Eq. (23) and a 

omparison between the solution obtained with the exact ODE so- 

ution and the polynomial estimation is shown. Furthermore, data 

oints from the PDE solution obtained in Davis et al. (2021) are 

verlapped. The mixing layer thicknesses based on the PDE solu- 

ion are obtained as the transverse location, y , where θY,g , θu,g and 

T,g become 0.99. 

The evolution of the different mixing layer thicknesses is in 

ccordance for the three methods used in this comparison. Er- 

ors between the ODE solution and the estimated solution based 

n the polynomial fit have already been discussed (see Fig. 19 ). 

or both of them, the mixing layer must grow with downstream 

istance as 
√ 

x , which is corroborated with the PDE results from 

avis et al. (2021) . However, deviations between the self-similar 

odel and the mixing layer equations are seen, especially for the 

volution of the streamwise velocity and the temperature mixing 

ayers, with errors of the same order as the relative deviations be- 

ween the ODE solution and the approximate solution ( < 5%). 

Overall, the polynomial fitting approach is valid for the type 

f mixture and range of thermodynamic states evaluated in this 

ork. It simplifies the evaluation of the mixing layer thickness 

ith reasonable accuracy and only relies on the freestream con- 

itions and the interface solution, which could be tabulated from 

revious simulations. Thus, it is not necessary to solve the system 

f ODEs or the system of PDEs for all cases and an estimate of 

he mixing layer thicknesses can be readily obtained. It is expected 

hat other problem configurations not used in the development of 

he correlations could show larger errors than the ones reported 

or cases A–G. 

. Summary and conclusions 

The non-ideal, two-phase, laminar mixing-layer equations have 

een reduced to a system of ordinary differential equations 

n terms of a similarity variable, η. The similarity transfor- 

ation follows classical techniques used in compressible flows 

 Williams, 2018 ) and has been generalized to be implemented 

ith any non-ideal thermodynamic model for the equation of 

tate and local phase equilibrium at the liquid-gas interface. In 

his work, the high-pressure thermodynamic model is based on a 

olume-corrected Soave-Redlich-Kwong cubic equation of state and 

ther fundamental thermodynamic principles, coupled with high- 
16 
ressure correlations to evaluate transport coefficients and phase 

quilibrium ( Davis et al., 2021 ). 

Good agreement between the self-similar solution and the so- 

ution of the system of partial differential equations ( Davis et al., 

021 ) is obtained, proving the validity of the self-similar approach. 

his is an important step towards reducing the complexity of 

he analysis of supercritical two-phase flows, while still capturing 

he main physics involved (e.g., enhanced diffusivity in the liquid 

hase, phase change reversal at the interface). This type of ap- 

roach can be helpful when used to implement realistic initial con- 

itions to more complex flow simulations (i.e., high-pressure atom- 

zation). The results show the existence of two phases at pressures 

bove the critical pressure of any chemical component. It is seen 

hat net condensation can occur even though the gas is hotter and 

eat is conducting into the liquid, as reported in previous works 

 Poblador-Ibanez and Sirignano, 2018; 2019 ). 

A correlation using a ninth-order polynomial is used to fit data 

rom various problem configurations into a generalized approach 

o represent the mixing layer evolution. This reduces the set of or- 

inary differential equations to a set of functions which depend 

nly on the freestream conditions, the interface equilibrium solu- 

ion and a non-ideal equation of state. Good estimates of the evo- 

ution of the mixing layer thickness on both sides of the interface 

re obtained from this simplified model, with errors well below 5% 

n most cases. 
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