
Phys. Fluids 34, 053321 (2022); https://doi.org/10.1063/5.0086153 34, 053321

© 2022 Author(s).

A volume-of-fluid method for variable-
density, two-phase flows at supercritical
pressure 

Cite as: Phys. Fluids 34, 053321 (2022); https://doi.org/10.1063/5.0086153
Submitted: 22 January 2022 • Accepted: 02 May 2022 • Published Online: 24 May 2022

 Jordi Poblador-Ibanez and  William A. Sirignano

COLLECTIONS

 This paper was selected as an Editor’s Pick

https://images.scitation.org/redirect.spark?MID=176720&plid=1777326&setID=405127&channelID=0&CID=652684&banID=520678856&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6ba90b713ed140e4fefb1b31c42f66a862d56784&location=
https://doi.org/10.1063/5.0086153
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0086153
https://orcid.org/0000-0003-0167-8174
https://aip.scitation.org/author/Poblador-Ibanez%2C+Jordi
https://orcid.org/0000-0001-5996-2034
https://aip.scitation.org/author/Sirignano%2C+William+A
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0086153
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0086153
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0086153&domain=aip.scitation.org&date_stamp=2022-05-24


A volume-of-fluid method for variable-density,
two-phase flows at supercritical pressure

Cite as: Phys. Fluids 34, 053321 (2022); doi: 10.1063/5.0086153
Submitted: 22 January 2022 . Accepted: 2 May 2022 .
Published Online: 24 May 2022

Jordi Poblador-Ibaneza) and William A. Sirignano

AFFILIATIONS

Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, USA

a)Author to whom correspondence should be addressed: poblador@uci.edu

ABSTRACT

A two-phase, low-Mach-number flow solver is created and verified for variable-density liquid and gas with phase change. The interface is
sharply captured using a split volume-of-fluid method generalized for a non-divergence-free liquid velocity and with mass exchange across
the interface. Mass conservation to machine-error precision is achieved in the limit of incompressible liquid. This model is implemented for
two-phase mixtures at supercritical pressure but subcritical temperature conditions for the liquid, as it is common in the early times of liquid
hydrocarbon injection under real-engine conditions. The dissolution of the gas species into the liquid phase is enhanced, and vaporization or
condensation can occur simultaneously at different interface locations. Greater numerical challenges appear compared to incompressible
two-phase solvers that are successfully addressed for the first time: (a) local thermodynamic phase equilibrium and jump conditions deter-
mine the interface solution (e.g., temperature, composition, surface-tension coefficient); (b) a real-fluid thermodynamic model is considered;
and (c) phase-wise values for certain variables (e.g., velocity) are obtained via extrapolation techniques. The increased numerical cost is allevi-
ated with a split pressure-gradient technique to solve the pressure Poisson equation for the low-Mach-number flow. Thus, a fast Fourier
transform method is implemented, directly solving the continuity constraint without an iterative process. Various verification tests show the
accuracy and viability of the current approach. Then, the growth of surface instabilities in a binary system composed of liquid n-decane and
gaseous oxygen at supercritical pressures for n-decane is analyzed. Other features of supercritical liquid injection are also shown.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086153

I. INTRODUCTION

A need to achieve elevated operating pressures exists in engineer-
ing applications involving chemical combustion of fuels (e.g., gas tur-
bines and liquid propellant rockets). Optimization of combustion
efficiency and energy conversion per unit mass of fuel points to the
design of high-pressure combustion chambers. Examples include die-
sel or gas turbine engines, which operate in the range of 25–40 bar, or
rocket engines, whose operating pressures range from 70 to 200 bar.
Moreover, the mixing process of the fuel with the surrounding oxi-
dizer, as well as its vaporization in the case of liquid fuels, also dictates
the overall performance of the combustion process.

Understanding the physics behind the mixing process of a liquid
fuel (i.e., atomization and vaporization) is crucial to design the com-
bustion chamber size and the injectors’ shape and distribution prop-
erly. Many experimental and numerical studies addressing this issue
have been performed at subcritical pressures. In this thermodynamic
state, liquid and gas are easily identified, and both fluids can be
approximated as incompressible fluids (except in transonic or super-
sonic regimes). However, well-known fuels such as diesel fuel, Jet-A,

or RP-1 are based on hydrocarbon mixtures whose critical pressures
are in the 20-bar range. Thus, actual operating conditions occur at
near-critical or supercritical (SC) pressures for the liquid fuel.

Experimental studies performed at these very high pressures
show the existence of a thermodynamic transition where the liquid
and gas become difficult to identify. Both phases present similar prop-
erties near the liquid–gas interface, which is rapidly affected by turbu-
lence while being immersed in a variable-density layer.1–9 Therefore,
this behavior has often been described in the past as a very fast transi-
tion of the liquid to a gas-like supercritical state, neglecting any role of
two-phase interface dynamics.10,11 Nevertheless, evidence of a two-
phase behavior at supercritical pressures exists based on requirements
that liquid and gas should be in local thermodynamic phase equilib-
rium (LTE) at the interface.12–17

The observations from experiments at supercritical pressures (i.e.,
the resemblance with a gas-like turbulent jet) are consistent with fast
atomization caused by the extreme environment and the failure of the
experimental techniques to capture liquid structures accurately. Because
liquid and gas look more alike near the interface, surface-tension forces
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are reduced, and gas-like liquid viscosities appear.18–20 Therefore, the
interface may be subject to the rapid growth of small surface instabilities
and fast distortion, which can cause an early breakup of very small drop-
lets. Although some progress is being made toward new experimental
techniques to capture the two-phase behavior in supercritical pressure
environments,21–24 experimental methods relying on traditional visuali-
zation techniques (e.g., shadowgraphy) might suffer from scattering and
refraction issues due to the presence of a cloud of small droplets sub-
merged in a variable-density fluid. Numerical results of incompressible
liquid round jets and planar sheets under conditions similar to those
found at supercritical pressures also support this reasoning.25–29

At supercritical pressures, diffusion layers with strong variations
of fluid properties grow on both sides of the interface. To maintain
phase equilibrium at the interface, the lighter gas species dissolution
into the liquid is enhanced. Thus, mixture critical properties change
near the interface and, in general, the mixture critical pressure is above
the chamber pressure.17 Delplanque and Sirignano13,15,16 were the first
to adopt the term “transcritical” to characterize situations in which
two phases coexist because the fuel’s pressure is supercritical, but the
interface temperature is subcritical. These works looked at droplet
vaporization at supercritical pressures and the implications on fuel
combustion. Other researchers, such as Yang and Shuen,14 followed
suit with similar studies. A two-phase interface can be maintained
until sufficient heating increases the droplet temperature, at which
point the liquid surface reaches the mixture critical point and transi-
tions to diffusive-controlled phase mixing. Consequently, since critical
pressure depends on composition, there can easily exist a fluid region
where a subcritical domain is neighbored by a supercritical domain,
with near-uniform pressure across both domains.

Dahms and Oefelein30–32 and Dahms33 have extensively dis-
cussed and quantified the interface transition from a two-phase behav-
ior to a continuum at supercritical conditions. At supercritical
pressures, but subcritical temperatures, the interface phase transition
region is only of a few nanometers thickness, which widens as temper-
ature increases toward the mixture critical point. The examples pro-
vided do not show interface thicknesses larger than 8nm for typical
hydrocarbon–nitrogen mixtures. At lower interface temperatures, LTE
is well established and diffusion layers of the order of micrometers
quickly form around the interface.17,34,35 As the interface temperature
nears the mixture critical temperature, the interface enters the contin-
uum domain if the molecular mean free path is substantially smaller
than the interface thickness (i.e., Knudsen number below 0.1).
Although larger temperatures increase the molecular mean free path,
the high-pressure environment may reduce it. Once a continuum
regime is achieved, the proper model for the interface is a diffuse
region with sharp gradients, similar to the supercritical state, where
classical LTE is no longer valid. Nonetheless, an analogy with com-
pressive shocks in supersonic flows suggests that the interface can be
considered a discontinuity under LTE or the proper set of boundary
conditions with a jump in fluid properties across it. Note that the non-
equilibrium layer thickness for a shock is at least an order of magni-
tude greater than the phase “non-equilibrium” transition region, and a
shock is treated as a discontinuity for practical purposes. The transi-
tion layer is described as a phase non-equilibrium domain following
the literature even though the thermodynamic equilibrium of the con-
tinuous fluid is maintained across the layer. The distinction between
the two phases disappears, thereby breaking down classical phase-

equilibrium laws. The non-equilibrium terminology arises from the
use of non-equilibrium molecular dynamics to model and study the
thickening of the phase transition layer. Therefore, the existing seman-
tics in the literature is not optimal.

Further evidence of this transcritical behavior and the interface
transition to a diffuse layer is seen in Crua et al.,7 where experiments
of fuel injection at a wide range of high pressures and temperatures
relevant to diesel engines show the existence of droplets at supercritical
pressures for the liquid fuel. These droplets are strongly affected by the
mixing around them and the reduced surface tension before heating
eventually causes a transition to a diffusive mixing.

The temperature range where two phases coexist at engine-
relevant conditions decreases considerably with pressure, either
because the mixture critical temperature drops below typical injection
temperatures17 or because the dense fluid has a molecular mean free
path at least an order of magnitude shorter than the phase transition
layer. Therefore, other works such as those from Zhang et al.36,37 and
Wang et al.38 analyze the injection of liquid fuels at supercritical pres-
sures and high temperatures without identifying a phase interface. The
chamber pressure of 253 bar is well above the critical pressure of any
of the analyzed fluids, and two phases cannot coexist in the range of
observed temperatures (i.e., above 490K).

Other numerical frameworks have recently been developed to
address transcritical and supercritical flows based on a diffuse interface
approach without surface-tension force.39–48 These works do not iden-
tify a phase interface under the assumption that the transport between
the two phases is driven only by diffusion. Fluid properties vary con-
tinuously within a finite region, and surface tension is neglected.
Instead, these works focus on transcritical issues such as the pressure
numerical oscillations generated by the equation of state near the criti-
cal point.47 This diffuse approach could yield inaccurate results since
two phases may coexist at transcritical conditions where the pressure
is supercritical but not the temperature. Additionally, local variations
in composition, temperature, and pressure may lead to an unstable
mixture and phase separation in a transcritical environment.49

Therefore, two-phase dynamics (i.e., surface tension and phase
change) may be important in certain flow regions.

The intrinsic complexity of supercritical fluids presents a chal-
lenge to the scientific community. A modeling and numerical frame-
work are needed to address liquid fuel injection at supercritical
pressures. Evidence points to a transcritical two-phase behavior of the
atomization process, at least at the liquid-core level and in a wide
range of supercritical pressures.7,15–17,49 It may be possible that small
droplets or liquid regions at very high temperatures do experience a
transition to a supercritical fluid state. Some of the challenges of a two-
phase model include the following: (a) the non-ideal fluid behavior at
supercritical states must be captured via a thermodynamic model18,50

(e.g., a real-gas equation of state); (b) LTE governs the state of the
liquid–gas interface, while both phases exchange heat and mass.
Moreover, the interface should be treated as a sharp discontinuity,
where fluid properties such as density or viscosity are discontinuous,
as well as the heat fluxes and concentration gradients into the inter-
face; (c) the interface location must be appropriately captured; and (d)
a computationally efficient method is desired since the additional
requirements to solve supercritical flows are costly.

Various interface-capturing methods exist, such as the level set
(LS) method by Sussman et al.51,52 and Osher and Fedkiw53 and the
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volume-of-fluid (VOF) method.54,55 A more comprehensive review of
interface-capturing and interface-tracking methods can be found in
Elghobashi.56 The LS method has been widely used in the literature. It
tracks a distance function to the interface, and a sharp representation
is achieved by combining it with a ghost fluid method (GFM).57,58

However, the GFM applied to compressible non-ideal fluids at super-
critical pressures is not straightforward and the LS method suffers
from numerical mass loss. That is, numerical errors in both the advec-
tion and reinitialization of the LS artificially displace the interface. This
problem worsens in high-curvature regions relative to the mesh size.
Therefore, it becomes difficult to address this issue in atomization sim-
ulations where a cascade process toward smaller liquid structures
occurs. Even if the LS transport equation is discretized with high-order
numerical schemes (e.g., WENO) or using the more accurate gradient
augmented level set method,59–62 some degree of mass loss exists.

On the other hand, VOF methods that conserve mass to machine
error exist.63 The VOF method tracks the volume occupied by the ref-
erence phase (i.e., the liquid) in all computational cells, and it handles
vaporization or condensation naturally. The governing equations are
solved with a sharp interface approach that only diffuses the interface
in a region of the order ofOðDxÞ by volume-averaging fluid properties
at interface cells and including jump conditions as localized body
forces.64,65 The VOF is a better option than other diffuse-interface
approaches based on the LS method, which impose a numerical inter-
face thickness of Oð3DxÞ that can overlap with the actual diffusion
layers.51–53 Therefore, the VOF method is preferred here.

VOF methods such as those developed by Baraldi et al.,63 Dodd
and Ferrante,64 and Dodd et al.65 are good starting points to develop
numerical tools for transcritical atomization. Even though these works
are developed for incompressible liquids with or without phase
change, they are computationally efficient and satisfy mass conserva-
tion while keeping a sharp interface. Recently, this methodology has
also been extended to two-phase flows with phase change where the
gas phase is compressible.66 Few works address the extension of VOF
methods to compressible liquids,67–69 much less address the non-ideal
thermodynamics at high pressures.

This paper introduces a numerical methodology to solve low-
Mach-number, compressible two-phase flows at supercritical pres-
sures. A discussion on the applicability and limitations of the proposed
model is presented in Sec. II. The necessary governing equations are
presented in Sec. III, and a summary of the thermodynamic model
used to represent non-ideal fluids is presented in Appendix A. In
Sec. IV, we extend the VOF method from Baraldi et al.63 to track com-
pressible liquids with phase change. The main bulk of the numerical
approach and algorithm to solve the governing equations is presented
in Sec. V. To ease the computational cost, the pressure-correction
method by Dodd and Ferrante64 for incompressible flows is extended
to low-Mach-number flows with phase change. Thus, a fast Fourier
transform (FFT) method can be used to solve the pressure Poisson
equation (PPE). Finally, Sec. VI presents some test problems to verify
the methodology and determine its viability to simulate liquid injec-
tion at supercritical pressures.

II. MODEL DESCRIPTION AND PHYSICAL LIMITATIONS

The theoretical model and the numerical approach described in
this paper aim to address the solution of weakly compressible two-
phase flows in a high-pressure thermodynamic regime (i.e.,

supercritical for the liquid), but still below the mixture critical point.
That is, the interface between both fluids is at a sufficiently low tem-
perature relative to the mixture critical temperature. As previously
highlighted, two phases can be sustained in this transcritical domain
as LTE defines the interface state and the enhanced mixing in the liq-
uid phase modifies the critical properties of the mixture. A compre-
hensive analysis of the thermodynamic complexity of this injection
environment representative of real engines is presented in Jofre and
Urzay.49 As shown in Fig. 1 of Jofre and Urzay,49 a two-phase problem
with diminished surface tension and finite energy of vaporization may
exist near the injector before the interface temperature reaches the
mixture critical point (i.e., diffusional critical point). Close to the mix-
ture critical point, the interface enters a diffuse and continuous transi-
tion from the liquid to the gas phase with sharp gradients confined in
the nanoscale (i.e., works by Dahms and Oefelein30–33). Beyond the
mixture critical point, no further distinction between liquid and gas
can be made and diffusive mixing between both fluids occurs.

The proposed model does not address the interface transition to a
supercritical state or the interface behavior near the mixture critical point
where classical LTE does not apply. Also, the combustion chemical reac-
tion between fuel and oxidizer is not considered. Instead, it focuses only
on the early stages of the fuel injection process, where two phases coexist.
Previous works have shown that the interface equilibrium temperature is
very close to the liquid bulk temperature,17,34,35 while typical liquid
hydrocarbon fuels are injected at relatively low temperatures. Heavy
hydrocarbon mixtures have high critical temperatures (e.g., Tc ¼ 617:7
K for n-decane); therefore, the interface can stay away from the mixture
critical point before substantial mixing and heating occurs, either caused
by a sufficiently hot oxidizer stream like in Jofre and Urzay49 or by
downstream combustion. In that case, the fuel-oxidizer mixing can be
driven by two-phase atomization under high pressures before the inter-
face transition to a supercritical state occurs. Thus, such a resolved two-
phase model is a powerful tool to analyze the physical phenomena driv-
ing the liquid fuel early mixing stage at engine-relevant conditions and
better understand the physical setup of downstream phenomena.

Note that turbulence models are not considered in the governing
equations presented in Sec. III. Liquid atomization involves a transi-
tion from laminar to turbulent flow, but where the early times of the
liquid deformation cascade can be modeled following a direct numeri-
cal approach. A sufficiently fine mesh may capture the quasi-laminar
flow as liquid structures form, and ligaments and droplets break up.

The thermodynamic range of two-phase coexistence is a particu-
lar feature of a given fuel-oxidizer mixture and a careful individual
analysis to determine whether a two-phase solver can represent reality
and under what conditions is needed. Further justification of the pro-
posed approach for the type of mixtures analyzed in Sec. VI is shown
in Fig. 1. Using the thermodynamic model presented in Appendix A,
phase-equilibrium diagrams are plotted for the binary mixture of
n-decane/oxygen as a function of interface temperature and pressure
[see Fig. 1(a)], which show the thermodynamic region of two-phase
interface coexistence. The n-decane/oxygen mixture has been chosen
as representative of hydrocarbon-based liquid fuels used in many engi-
neering applications and other fuel-oxidizer configurations should
behave similarly (e.g., diesel–air). The interface temperature range ana-
lyzed in this work is bounded by the bulk temperature of each phase
without chemical reaction. The examples provided in Sec. VI for the
binary mixture of n-decane/oxygen have a liquid bulk temperature of
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450K and a gas bulk temperature of 550K. Therefore, the interface
equilibrium temperature is expected to remain close to 450K and, in
cases with strong mixing, the temperature upper bound is limited by
the gas bulk temperature. For all analyzed pressures, the interface can-
not reach a supercritical state. Even at very high pressures (i.e.,
150 bar), the mixture critical temperature is very close to the pure
hydrocarbon critical temperature.17,34,35

Moreover, the Knudsen number criteria detailed in the works by
Dahms and Oefelein30–32 and Dahms33 have to be analyzed to determine
whether the interface, created through molecular force fields, has entered
or not the continuum domain. Here, a rough estimate of the interface
thickness, lC, growth with temperature is obtained by assuming an expo-
nential growth similar to Fig. 6 from Dahms and Oefelein.31 The molec-
ular mean free path of the vapor equilibrium solution is estimated
using30 K ¼ ðkBTÞ=

ffiffiffi
2
p

ppd2
� �

where kB is the Boltzmann constant, T
the interface temperature, p the interface pressure, and d ¼

PN¼2
i¼1 Xidi

the average molecule kinetic diameter. The kinetic diameter is chosen as
the representative molecule diameter since its definition is directly linked
to the molecular mean free path. For oxygen, dO2 ¼ 0:346 nm,70 and for
n-decane, dC10H22 ¼ 0:485 nm.71

The Knudsen number, Kn ¼ K=lC, is plotted in Fig. 1(b) as a
function of the interface equilibrium solution at various temperatures
and pressures. The continuum criteria defined in Dahms and Oefelein30

of Kn< 0.1 is only troublesome for the 150bar case, where the estimates
suggest the interface might enter the continuum domain at tempera-
tures above 525K. Nevertheless, the interface equilibrium temperature
remains well below this threshold in the cases presented in Sec. VI, and
the LTE interface model can be justified. As seen in Fig. 24 where some
results of a three-dimensional symmetric planar jet at 150 bar are
shown, only a few interface locations are close to the estimated theoreti-
cal limit where the interface is in phase non-equilibrium.

Other reported concerns for this type of flow are also considered.
Stierle et al.72 have shown that the interface thermal resistivity or heat
transfer efficiency has to be considered. For a large thermal resistivity,
a substantial temperature jump exists across the interface and the

phase non-equilibrium transition region must be modeled. Note that
this condition does not imply that the transition layer has entered the
continuum as in the works by Dahms and Oefelein30–32 and Dahms.33

In this work, thermal conductivities are small at the interface, but the
expected temperature jump across the interface is negligible when
compared to the interface equilibrium temperature.34 Moreover, the
stability of the mixture (e.g., diffusional stability) for non-ideal mix-
tures at high pressures is responsible for phase separation and the
reappearance of a two-phase interface.49 No issues have been found
during the simulation of various tests, which suggests that the compo-
sition obtained from the LTE interface model provides a stable bound-
ary for the mixing occurring in both phases in the low-Mach-number
environment for which the thermodynamic pressure remains con-
stant. However, phase separation is possible in more complex scenar-
ios where the local temperature and pressure change sharply and the
local mixture composition becomes unstable.

Finally, various issues can be addressed in future works to
improve the model and its performance, as well as widen the thermo-
dynamic domain where it can be applied. For instance, the spurious
currents generated around the interface under the VOF framework
must be addressed, find means to reduce the added computational
cost and handle higher interface temperatures with a diffuse phase
transition model near the mixture critical point or a transition to a
supercritical interface, similar to how Zhu and Aggarwal73 and
Aggarwal et al.74 handle the transition from a two-phase interface to
supercritical diffuse mixing in transcritical droplet studies.
Nonetheless, the paper aims to lay out a clear framework to study two-
phase flows at supercritical pressures and the early atomization of liq-
uid fuels at engine-relevant conditions.

III. GOVERNING EQUATIONS

The governing equations of fluid motion for compressible two-
phase flows are the continuity equation

@q
@t
þr � ðq~uÞ ¼ 0; (1)

FIG. 1. Phase equilibrium solution for the binary mixture of n-decane/oxygen as a function of interface temperature and pressure. (a) n-decane mole fraction at the interface;
and (b) estimated Knudsen number at the interface using the vapor equilibrium composition.
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and the momentum equation

@

@t
ðq~uÞ þ r � ðq~u~uÞ ¼ �rpþr � %s; (2)

where q and~u are the fluid density and velocity, respectively, and p is
the pressure. %s¼ l½r~u þr~uT � 2

3 ðr �~uÞ%I � is the viscous stress dyad,
where l represents the dynamic viscosity of the fluid and %I represents
the identity dyad. For simplicity, a Newtonian fluid under Stokes’
hypothesis is assumed. However, fluid behavior is far from ideal at
very high pressures, where both liquid and gas are very dense fluids
and compressible. Thus, models to estimate the bulk viscosity or sec-
ond coefficient of viscosity (e.g., Jaeger et al.75) might be considered in
future works to revise the use of the Stokes’ hypothesis. A comparison
with the current fluid modeling will shed more light on the issue.

Furthermore, governing equations for the species concentration
and for the energy of the fluid are needed. Only binary mixtures are
considered in this work for simplicity, but the numerical framework
can easily be extended to multi-component mixtures. For a binary
mixture, only one species continuity equation is required. As shown in
Sec. VI, the focus is on problems where the liquid phase begins as a
pure hydrocarbon fuel (i.e., Y2 ¼ YF ¼ 1), while the gas phase initially
is pure oxygen (i.e., Y1 ¼ YO ¼ 1). Choosing the oxidizer species,
where

PN¼2
i¼1 Yi ¼ YO þ YF ¼ 1, the species transport equation is

@

@t
ðqYOÞ þ r � ðqYO~uÞ ¼ r � ðqDmrYOÞ: (3)

Here, a mass-based Fickian diffusion coefficient, Dm, is chosen to
model the diffusion flux due to concentration gradients. Thermo-
diffusion (i.e., the Soret effect) is neglected. Although a high-pressure
model is used to estimate this transport coefficient (see Appendix A),
the use of more complex models to evaluate mass diffusion will be
investigated in the future (i.e., generalized Maxwell–Stefan formulation
for multicomponent mixtures).

The energy equation is written as an enthalpy transport equation
as

@

@t
ðqhÞ þ r � ðqh~uÞ ¼ r � k

cp
rh

 !
þ
XN¼2
i¼1
r

� qDm �
k
cp

" #
hirYi

 !
; (4)

where h is the mixture specific enthalpy, k is the thermal conductivity,
and cp is the specific heat at constant pressure. Pressure terms and vis-
cous dissipation in the energy equation are neglected under the low-
Mach-number configuration analyzed in this work. The substitution
krT ¼ ðk=cpÞrh�

PN¼2
i¼1 ðk=cpÞhirYi is made, and Fickian diffu-

sion is considered for the energy transport via mass diffusion.
Moreover, this term demands the partial derivative of mixture
enthalpy with respect to mass fraction, hi � @h=@Yi. Note that this
nomenclature must not be confused with the standard definition of
partial enthalpy (i.e., species’ enthalpy at the same temperature and
pressure as the mixture). Only for the ideal case, both approaches
would be equivalent, and the mixture enthalpy would be equal to the
weighted sum of the individual enthalpies of each species at the same
temperature and pressure. For the convection and conduction terms,
the proper formulation for mixture enthalpy at high pressures is used.

A. Interface matching relations

The solution of the governing equations is valid within each
phase. However, a discontinuity in thermodynamic and transport
properties exists across the interface. Thus, interface matching rela-
tions must be defined and embedded into the solution of each govern-
ing equation to connect both phases. This section defines such
relations, while Sec. V addresses the integration of these matching rela-
tions into the numerical method.

The interface, denoted by C, separates the liquid and gas
domains. The subscripts l and g refer to the liquid phase and the gas
phase, respectively. The normal and tangential unit vectors at any
interface location are represented by ~n and ~t , respectively, with ~n
defined positive pointing toward the gas phase. The mass flux per unit
area across the interface, _m0, is positive when vaporization occurs and
negative when condensation occurs. The vaporization or condensation
rate is computed from

_m0 ¼ qlð~ul �~uCÞ �~n ¼ qgð~ug �~uCÞ �~n; (5)

where~uC is the interface velocity, which can vary along the interface.
If _m 0 is non-zero, then the interface moves with respect to the

fluid. In this case, the normal component of the velocity field is discon-
tinuous across the interface, while the tangential component is contin-
uous. These conditions are given by

ð~ug �~ulÞ �~n ¼
1
qg
� 1

ql

 !
_m0; ~ug �~t ¼~ul �~t : (6)

A pressure jump across the interface is caused by a combination
of surface-tension force, mass exchange across the interface and a mis-
match in the normal viscous stresses, as seen in Eq. (7). r represents
the surface-tension coefficient and j is the interface curvature, defined
positive with a convex liquid shape (i.e., j ¼ r �~n),

pl � pg ¼ rjþ ð%s l �~nÞ �~n � ð%sg �~nÞ �~n þ
1
qg
� 1

ql

 !
ð _m0Þ2: (7)

Because the interface properties may vary along the interface, the
shear stress across the interface will not be continuous in the presence
of a surface-tension coefficient gradient. The tangential stress balance
is given by

ð%sg �~nÞ �~t � ð%s l �~nÞ �~t ¼ rsr �~t ; (8)

where rs ¼ r�~nð~n � rÞ is the surface gradient. While the nor-
mal force rj in Eq. (7) tends to minimize surface area per unit vol-
ume and smooth the liquid surface in two-dimensional structures,
the surface-tension coefficient gradient along the interface drives
the flow toward regions of higher surface-tension coefficient.
Smoothing can also occur in three dimensions, but surface tension
is also responsible for ligament thinning and neck formation lead-
ing to liquid breakup.

Matching conditions for the species continuity equation and the
energy equation become, respectively,

_m 0ðYO;g � YO;lÞ ¼ ðqDmrYOÞg �~n � ðqDmrYOÞl �~n (9)

and
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_m0ðhg � hlÞ ¼
k
cp
rh

 !
g

�~n � k
cp
rh

 !
l

�~n

þ qDm �
k
cp

 !
ðhO � hFÞrYO

" #
g

�~n

� qDm �
k
cp

 !
ðhO � hFÞrYO

" #
l

�~n; (10)

where the energy matching equation has been simplified for the
binary-mixture configuration.

Phase-equilibrium relations provide a necessary thermodynamic
closure for the interface matching. LTE is imposed through an equality
in chemical potential for each species i on both sides of the interface.
This condition can be expressed in terms of an equality in fugacity,76,77

fi, as

fliðTl; pl;XliÞ ¼ fgiðTg ; pg ;XgiÞ; (11)

where fugacity is a function of temperature, pressure, and mixture
composition. From a thermodynamic point of view, the pressure jump
across the interface due to surface tension is negligible and pressure is
treated constant and equal to the chamber value for phase-equilibrium
purposes (i.e., pl � pg � pch). As explained later in Sec. V, the thermo-
dynamic pressure is assumed to be constant for low-Mach-number
compressible flows and dynamic pressure variations are related to fluid
motion but have little effect on fluid properties. Under this assump-
tion, phase equilibrium can be expressed using the fugacity coefficient,
Ui � fi=pXi, as XliUli ¼ XgiUgi where Xi represents the mole fraction
of species i.

Furthermore, the interface presents a negligible thickness of the
order of nanometers,30,31,33 while mass, momentum, and energy
quickly diffuse across regions of the order of micrometers around the
interface.17,34,35 Thus, the interface thickness is neglected in the present
work and temperature is assumed continuous (i.e., Tg ¼ Tl ¼ TC).
This assumption simplifies the LTE solution and a mixture composi-
tion can readily be obtained on each side of the interface. The validity
and limitations of this interface model for the mixtures considered in
this paper have been discussed in Sec. II.

B. Thermodynamic model

The previous set of governing equations is coupled to a thermo-
dynamic model based on a volume-corrected Soave–Redlich–Kwong
(SRK) cubic equation of state78 and various models and correlations to
estimate fluid and transport properties for the non-ideal fluid.77,79,80

For the low-Mach-number flows analyzed in this work, the thermody-
namic pressure is assumed uniform. A summary of the thermody-
namic model is presented in Appendix A (i.e., details on the SRK
equation of state, models to evaluate transport properties and the
surface-tension coefficient) and extensive details are available in Davis
et al.34

IV. INTERFACE MODEL

The accurate solution of the location and geometrical properties
of the interface separating two immiscible fluids is of utmost impor-
tance in a two-phase fluid solver. In this work, a compressible exten-
sion of the VOF method is used to advect and capture the interface

(Sec. IVA) and evaluate its geometrical properties (Sec. IVB). The
method applies to cases where density on both sides of the interface is
variable without regard to whether the variations are dependent on
pressure, composition, or temperature. At high pressures, the dissolu-
tion of lighter gas species into the liquid phase is enhanced, thus caus-
ing the liquid volume to expand near the interface, that is, in addition
to thermal expansion. Moreover, phase change is an essential feature
of high-pressure environments, where vaporization or condensation
can occur simultaneously at different locations along the interface.19

This behavior depends on the LTE and the balancing of the mass,
momentum, and energy fluxes at the liquid–gas interface, as described
in Sec. IIIA.

A. The volume-of-fluid method for compressible
liquids

The VOF method54,55 advects a characteristic function, vð~x; tÞ,
with the fluid velocity, ~u, following Eq. (12). v ¼ 1 in the reference
phase (i.e., liquid phase in the present work) and v ¼ 0 in the other
phase (i.e., gas phase). The volume fraction, C ¼ 1

V0

Ð Ð Ð
V0

vdV , repre-
sents the volume occupied by the reference fluid in a cell with respect
to the total cell volume, V0,

Dv
Dt
¼ @v
@t
þ~u � rv ¼ 0: (12)

The advection of Eq. (12) is performed by extending the algo-
rithm and VOF tools proposed in Baraldi et al.63 to compressible
liquids with phase change. A three-step split advection algorithm is
implemented, consisting of an Eulerian implicit, an Eulerian algebraic,
and a Lagrangian explicit step (EI-EA-LE algorithm). Details about
this algorithm and its extension to compressible liquids are explained
in the following paragraphs and shown in Eqs. (15)–(17). Compared
to the original EI-EA-LE method proposed by Scardovelli et al.,81 the
algorithm from Baraldi et al.63 is wisp-free and mass-conserving to
machine-error precision for incompressible flows. Yet, numerical
errors exist and are bounded by the accuracy to which r �~u ¼ 0 is
satisfied and other errors introduced by the geometrical operations of
the VOF method, which can be expected to increase when the liquid
structure is under-resolved.

During the split advection of Eq. (12), the interface is geometri-
cally reconstructed between steps using the piecewise linear interface
construction (PLIC) method by Youngs.82 Although the reconstruc-
tion process is computationally expensive, the method presented in
Baraldi et al.63 is computationally more efficient than other higher-
order VOF methods (e.g., 3D-ELVIRA83) and ensures that the volume
fraction obtained by solving Eq. (12) is conserved. Therefore, mass is
conserved to machine-error precision when the fluid density is con-
stant. As reported in Haghshenas et al.,84 this is only achieved by
low-order convective schemes as the one used in Baraldi et al.63 This
low-order advection scheme causes smearing of the solution around
the interface, introducing geometrical errors as the interface is
advected. Nevertheless, volume-conservation properties are favored
over higher-order advection schemes and a sufficiently low CFL (i.e.,
Courant–Friedrichs–Lewy) condition is used to limit the magnitude of
such errors.

Equation (12) is rewritten in conservative form accounting for
mass exchange and fluid compressibility as
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@v
@t
þr � ðv~ulÞ ¼ vr �~ul �

_m
ql
; (13)

where _m is the mass flux per unit volume added to (condensation
with _m < 0) or subtracted from (vaporization with _m > 0) the liquid
phase. _m is evaluated as _m ¼ _m0dC, where _m0 is the mass flux per
unit area across the interface and dC activates the phase-change term
only at the interface cells. The value of _m0 is a result of the solution of
the system of interface matching conditions discussed in Secs. IIIA
and VB. Here, dC is obtained from the concept of interfacial surface
area density as given in Palmore and Desjardins,85 whereby in a given
region X of the domain, dC ¼ ð

Ð
C\XdSÞ=ð

Ð
XdVÞ. This term is non-

zero only at interface cells, where dC ¼ AC=V0, with V0 being the cell
volume and AC the area of the interface plane crossing the cell (i.e.,
obtained from the PLIC).

Notice the use in Eq. (13) of the reference phase density, ql, and a
liquid phase velocity,~ul . Because of the different fluid compressibilities
and the velocity jump across the interface in the presence of phase
change (see Sec. IIIA), the liquid phase has to be advected using a
velocity field only representative of the liquid. Extrapolation techni-
ques dealing with this issue are explained in Sec. VC. For the com-
pressible liquid, ql is the interface liquid density.

Integrating Eq. (13) over the volume of the cell and in time with
a first-order forward Euler scheme, an equation to update the volume
fraction of a given cell is obtained as

Cnþ1 ¼ Cn �
XNfaces

i¼1
Fi þ ~Cðr �~ulÞDt �

_m
ql

Dt: (14)

The term
PNfaces

i¼1 Fi represents the sum of the signed fluxes of
the reference phase in and out of the cell, which are evaluated geo-
metrically within the EI-EA-LE split advection algorithm coupled
with PLIC.63 ~C is the volume fraction of the cell, but where the
choice of implicit (~C ¼ Cnþ1) or explicit (~C ¼ Cn) evaluation could
be made. However, only the implicit formulation, ~C ¼ Cnþ1, has
been found to provide consistent results with the split advection
method used here. In summary, Eq. (14) accounts for the variation
of the volume fraction at a given cell caused not only by convective
fluxes in and out of the cell but also by the local volume expansion
of the reference phase and the volume of the reference phase
added/subtracted due to phase change. In these ways, it differs from
prior approaches that treated incompressible liquids with or with-
out phase change.

The three-step EI-EA-LE split advection is constructed such that
the terms Cnþ1 ¼ Cn �

PNfaces
i¼1 Fi from Eq. (14) are recovered for an

incompressible fluid without phase change. The EI and LE steps con-
sider the local non-zero divergence in the advection direction, while
the EA step is designed and only used to satisfy the incompressible
three-dimensional version of Eq. (14). In a two-dimensional code,
only an EI-LE split advection algorithm is needed and it already satis-
fies Cnþ1 ¼ Cn �

PNfaces
i¼1 Fi whenr �~ul ¼ 0 and _m ¼ 0.

The following lines illustrate an example of the split advection
consecutive steps. The nomenclature follows that u, v, and w represent
the liquid velocity components in x, y, and z directions and E,W, N, S,
T, and B define the East–West (x direction), North–South (y direction)
and Top–Bottom (z direction) cell faces, respectively.

For a two-dimensional compressible liquid without phase change
( _m ¼ 0), the EI-LE steps yield, with the EI step in the x direction and
the LE step in the y direction

CEI ¼ Cn þ Fu
W � Fu

E

1� uE � uW
Dx

Dt
; (15a)

CLE ¼ CEI 1þ vN � vS
Dy

Dt
� �

þ Fv
S � Fv

N

¼ Cn �
XNfaces

i¼1
Fi þ CEIðr �~ulÞDt 6¼ Cnþ1; (15b)

which does not immediately satisfy the form of Eq. (14). Thus, a cor-
rective step is needed after the LE step, as defined in Eq. (16). In a
three-dimensional compressible flow, the EA step is designed such
that Eq. (15) and the correction shown in Eq. (16) are still valid,

Cnþ1 ¼ CLE þ ð~C � CEIÞðr �~ulÞDt: (16)

The present algorithm implements the volume addition or sub-
traction caused by mass exchange before advecting the interface. On a
uniform mesh and with the EI step in the x direction, the EA step in
the y direction and the LE step in the z direction, the advection steps
shown in Baraldi et al.63 now follow Eq. (17), including the prelimi-
nary step to address phase change and the final correction step to
match the form of Eq. (14). In the code, the algorithm alternates the
direction of the EI-EA-LE steps to minimize directional bias

CPC ¼ Cn � _m
ql

Dt; (17a)

CEI ¼ CPC þ Fu
W � Fu

E

1� uE � uW
Dx

Dt
; (17b)

CEA ¼
CEI 1� uE � uW

Dx
Dt þ ðr �~ulÞDt

� �
þ Fv

S � Fv
N

1þ wT � wB

Dz
Dt

; (17c)

CLE ¼ CEA 1þ wT � wB

Dz
Dt

� �
þ Fw

B � Fw
T ; (17d)

Cnþ1 ¼ CLE þ ð~C � CEIÞðr �~ulÞDt: (17e)

The definition of the EI, EA, and LE steps shown in Eq. (17)
ensures that the solution of the volume fraction, C, stays bounded (i.e.,
0 � C � 1) and C¼ 1 within the reference phase. However, as men-
tioned earlier, small errors may exist due to inaccuracies in the evalua-
tion of geometrical fluxes and how well the velocity field satisfies
r �~ul . As a result of the finite precision when evaluating the geometri-
cal fluxes, wisps or residual values of C are left in the domain. The
wisp-suppression algorithm from Baraldi et al.63 is used to limit and
control the number of wisps.

Moreover, the EA step, Eq. (17c), might introduce small under-
shoots (i.e., C< 0) and overshoots (i.e., C> 1) in its incompressible
form.63 For compressible flow, the same problem exists. Additionally,
phase change and volume dilation in a compressible framework may
also cause undershoots and overshoots of C in interface cells where
almost no liquid is present or where the liquid occupies almost the
entire cell volume. To eliminate these issues, a redistribution algorithm
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following that of Baraldi et al.63 and Harvie and Fletcher86 is used.
However, the present work adds directionality following the interface
normal unit vector,~n, to the redistribution algorithm whenever possi-
ble. Since most of the undershoots and overshoots in C will be caused
by phase change and volume expansion in the direction perpendicular
to the interface, this approach becomes more consistent and preserves
the interface shape better.

The authors acknowledge that this VOFmethod for compressible
liquids is not mass-conserving to machine error. Using a volume-
preserving algorithm does not ensure mass conservation when density
is not constant. Thus, mass conservation will improve as the mesh is
refined and a lower time step is used, better capturing the density field.
This is no different than other available VOF methods for compress-
ible flows.67–69 Nevertheless, two main reasons motivate the use of this
approach: (a) to maintain a sharp interface and (b) the method simpli-
fies to the mass-conserving VOF method from Baraldi et al.63 when
r �~u ¼ 0 and _m ¼ 0.

B. Evaluation of interface geometry

The normal unit vector,~n, is evaluated using the mixed Youngs-
centered (MYC) method,87 and curvature is computed using an
improved height function (HF) method.88 The HF method is second-
order accurate but presents considerable curvature errors whenever
the normal unit vector of the interface is not aligned with the coordi-
nate axes.63 This issue contributes, among other factors, to the genera-
tion of spurious velocity currents around the interface due to a lack of
an exact interfacial pressure balance. This issue is a reason for caution
in liquid injection problems where the growth of instabilities along the
liquid–gas interface must be only related to physical phenomena. This
problem is more important at supercritical pressures where the liquid
and gas phases look more alike near the interface and the surface-
tension force that would stabilize these numerical instabilities caused
by spurious currents is reduced.

Efforts have been made to develop more accurate methods to
evaluate the interface geometry under the VOF framework. For
instance, Popinet89 presents an adaptive scheme to enhance the accu-
racy of curvature computations for under-resolved interfaces using the
HF method. This modification to the HF method is not implemented
in the present work, but may be considered in the future. Other works
combine the VOF and LS methods to use the smoother LS distribution
to obtain a better estimate of the interface geometry.90,91 However, a
key step whereby the LS function is re-distanced with respect to the
PLIC interface reconstruction does not ensure a mesh-converging cur-
vature. Together with the intrinsic complexity of combining the VOF
and LS methods, the HF method is preferred.

V. NUMERICAL SOLUTION OF THE GOVERNING
EQUATIONS

The main algorithm steps at every time step are shown as a flow-
chart in Fig. 2. The goal here is to provide some context on the neces-
sary steps to solve the governing equations before proceeding with the
individual details.

The simulation is initialized by assigning initial conditions to all
variables involved in the solution process. First, the bulk of the VOF
method is used, which includes the interface advection, the evaluation
of the interface normal unit vector using the MYC method, the PLIC
interface reconstruction, and the HF method to evaluate the interface

curvature. Once the interface has been updated at tnþ1, the governing
equations for species continuity and energy are solved.

When the entire domain has an updated solution for the interface
location and its geometry, as well as the mixture composition and
enthalpy in both phases, the LTE and jump conditions are solved at
each interface cell. At the same time, since pressure is fixed in the ther-
modynamic model for the low-Mach-number configuration, the fluid
properties are updated everywhere (e.g., qnþ1).

Before solving the continuity and momentum equations, the new
fluid compressibilities are calculated and extrapolated. After that, the
phase-wise velocities are obtained from the extrapolated fluid com-
pressibilities and used at the next time step. Then, a predictor-
projection method is used to solve the momentum equation, which
splits the pressure gradient into an implicit constant–coefficient term
and an explicit variable–coefficient term to solve a low-Mach-number
PPE using an FFT methodology.

The VOF methodology has been presented in Sec. IV. Sections
VA–VE address the rest of the main blocks of the solution algorithm
in order. Section VA discusses how the governing equations for the
scalar variables (i.e., species continuity and energy) are solved. Then,
the methodology to obtain the interface properties is presented in Sec.
VB and the evaluation of fluid compressibilities and the extrapolation
techniques used to obtain phase-wise compressibilities and velocities
are discussed in Sec. VC. The solution method of the continuity and
momentum equations is presented in Sec. VD, where a low-Mach-
number Poisson equation for the pressure field is developed. Finally,
Sec. VE provides information on the evaluation of the time step, Dt,
and some final remarks about the algorithm.

The proposed methodology is presented for a computational
domain discretized with a Cartesian uniform staggered mesh. Control
volumes or cells are defined, where velocity components are located at
the center of the faces of the control volume and the rest of the varia-
bles (e.g., pressure, mass fraction, fluid properties, and volume fraction
occupied by the liquid phase) are defined at the center of the cell.
Despite this simplified mesh configuration, the proposed method
could be extended to non-uniform meshes or orthogonal meshes.92

We focus on the modeling and numerical difficulties of high-pressure
transcritical flows rather than particular details associated with specific
and more complex mesh configurations.

A. Discretization of the species continuity and energy
equations

The governing equations for species mass fraction, Eq. (3), and
energy, Eq. (4), are solved differently than the continuity and momen-
tum equations presented in Sec. VD. Here, the non-conservative
forms of both equations are discretized using finite differences. The
reasons for this discretization choice are to obtain a better control on
numerical stability and to directly include the interface solution in the
discretization. Thus, these equations are solved in each phase indepen-
dently using phase-wise variables. For low-Mach-number flows, the
solution of LTE at the interface is directly coupled to the energy and
species mass balances across the interface. Once the interface solution
is known, it is imposed as a phase boundary condition.

Other researchers solve the conservative form of the energy equa-
tion in terms of the fluid temperature using finite-volume techni-
ques.93,94 In that case, fluid properties are volume-averaged at
interface cells and a source term is included in the energy equation to
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describe the energy jump across the interface [i.e., Eq. (10)]. This
one-fluid approach is suitable to solve for the temperature, since it is
continuous across the interface. However, one would still have to extrap-
olate the temperature field on both sides of the interface or use one-
sided (phase-wise) stencils to obtain the correct temperature gradients
numerically for each phase. As seen in Sec. VD, a similar approach is
used to address the solution of the continuity and momentum equa-
tions. However, the mixture composition and enthalpy present sharp
discontinuities across the interface. Therefore, a phase-wise approach
whereby the interface solution is embedded in the discretization is pre-
ferred to avoid further costly extrapolations. The finite-difference
method applied to the species and energy transport equations is an
adequate choice, as used in other two-phase works.62,65,66

The non-conservative forms of Eqs. (3) and (4) are integrated in
time using an explicit first-order step as

DYO

Dtnþ1
¼ Ynþ1

O � Yn
O

Dt
þ ð~uf � rYOÞn ¼

1
qn
r � ðqDmrYOÞn
	 


; (18)

Dh
Dt

nþ1
¼ hnþ1 � hn

Dt
þ ð~uf � rhÞn

¼ 1
qn
r � k

cp
rh

 !n

þ
XN¼2
i¼1
r � qDm �

k
cp

" #
hirYi

 !n
2
4

3
5;
(19)

where the convective and diffusive terms are evaluated explicitly at
time n and the phase-wise velocity~uf is used. Here, f can refer to the
gas phase (i.e., f¼ g) or to the liquid phase (i.e., f¼ l). The term~uf is
evaluated at the cell center using a linear average from cell face values.
The choice of a first-order integration in time is made in line with the
VOF split-advection algorithm. The time step value is already
restricted to ensure numerical stability and minimize the geometrical
errors introduced when advecting the volume-fraction field. Any influ-
ence of the low-order temporal scheme in the solution of Eqs. (18)
and (19) is therefore limited. A higher-order temporal integration
could be considered in future works.

FIG. 2. Algorithm flow chart at every time step to solve low-Mach-number, two-phase flows at supercritical pressures.
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Figure 3 shows a sketch of a two-dimensional mesh where the inter-
face is identified (i.e., in cells i and i�1). The interface can intersect the
numerical stencil used to evaluate @YO=@x depending on the cell and dis-
cretization order. Thus, Dx1 < Dx must be determined. Notice here
Dx2 ¼ Dx3 ¼ Dx, being Dx the mesh size. The PLIC interface recon-
struction at cell i could be used to obtain Dx1. However, the approach
used inDodd et al.65 to estimateDx1 is faster andmore stable. The volume
of liquid occupying the space between node i and i�1 is used to estimate
Dx1. That is, a staggered value of the volume fraction, Ci�1=2, is obtained
from Ci�1 andCi, as well as from the respective PLIC interface reconstruc-
tions. Depending on the interface configuration, this approach becomes
exact (i.e., equivalent to using the location obtained with the PLIC inter-
face). Even when Ci�1=2 > 0; Dx1 6¼ Dx is only evaluated if nodes i and
i�1 belong to different phases. For instance, following Fig. 3, the staggered
volume fraction is used to estimateDx1 � ð1� Ci�1=2ÞDx.

The convective terms are discretized using an adaptive first-/
second-order upwinding scheme to maintain numerical stability and
boundedness (i.e., YO � 1). Within the limits of the CFL conditions,
only a first-order upwind discretization of the convective term is
unconditionally bounded.95 On the other hand, diffusive terms are dis-
cretized using second-order central differences. Some examples and
specific details regarding the discretization of convective and diffusive
terms and the inclusion of the interface in the numerical stencils are
provided in Appendix C.

The discretization proposed here is at most second-order accurate
in space and may decrease to first order near the interface or when
boundedness problems arise. Overall, the convective term will be discre-
tized with a second-order scheme. The boundedness condition becomes
important only during the early times if a sharp initial condition has
been imposed in each phase. Once the mesh captures the mixing regions
well, the second-order upwinding scheme should be bounded. Then,
the interface proximity to the grid nodes only occurs for certain cells at
each time step. Similarly, the diffusive term is second order except when
the interface is too close to a grid node. Nevertheless, stability concerns
prompt the usage of this low-order scheme. Moreover, the mesh is very
fine to capture the interface properly and to obtain a smooth and con-
verged solution of the extrapolations discussed in Sec. VC. Thus, a low-
order spatial accuracy in the discretization of the scalar equations in
some regions is not concerning.

B. Interface local phase equilibrium and jump
conditions

As discussed in Sec. IIIA, the interface is assumed to be in LTE.
To obtain the interface equilibrium state at interface cells, the normal-

probe technique is used.19,65,94 A line perpendicular to the interface
plane is drawn extending into both the liquid and the gas phases. The
centroid of the interface plane at a given cell is chosen as the starting
point of the probe. On this line, two nodes are created in each phase
where the mass fraction and enthalpy values are linearly interpolated
(i.e., bilinear interpolation in two dimensions and trilinear in three
dimensions). Thus, the normal gradients to the interface needed in
Eqs. (9) and (10) can be evaluated. Ideally, the nodes on the probe are
equally spaced with Dx. However, some situations require a larger
spacing to avoid using grid nodes in opposite phases when interpolat-
ing the mass fraction or the enthalpy values (see Fig. 4). This situation
must be avoided since there is a sharp jump of these variables across
the interface.

In general, a second-order, one-sided, finite-difference method
can be used to evaluate the perpendicular gradient at each side of the
interface. To do so, the values of each variable in the two nodes on the
probe and the interface value are used. Notice it is assumed that the
entire interface plane has the same equilibrium solution. As the inter-
face deforms and thin ligaments form, the normal gradients may be
calculated using a first-order, one-sided finite difference method if the
normal probe crosses the interface again. However, at this point the
mesh is under-resolving the interface and its solution might already be
poorly defined.

The interface solution is unknown and an iterative process is
needed to solve the system of equations formed by the jump condi-
tions and LTE. With the simplifications introduced in this work (e.g.,
low-Mach-number flows, binary mixture), the interface matching rela-
tions for species continuity and energy, Eqs. (9) and (10), together
with phase equilibrium, Eq. (11), are decoupled from the momentum
matching relations, Eqs. (7) and (8). Therefore, the same iterative
solver discussed in Poblador-Ibanez and Sirignano17 is used to obtain
the interface solution at each interface cell. The solution of this system
of equations defines the properties of the local interface plane: mass
flux and heat flux across the interface, temperature, surface-tension
coefficient, composition and fluid properties on each side of the inter-
face, and, in turn, the pressure jump to be imposed in the momentum
equation.

C. Evaluation of fluid compressibilities and phase-wise
velocities

Each phase’s compressibility has to be determined in order to
evaluate phase-wise velocities and solve the momentum equation as
presented in Sec. VD. Under the low-Mach-number constraint, it is
sufficient to know the density variations caused by temperature and
concentration changes as the thermodynamic pressure is assumed
constant in open-boundary problems. In this work, the material deriv-
ative of density is related to the material derivatives of mixture
enthalpy and mass fraction of each species as

Dq
Dt
¼

@q
@T

����
Yi

@h
@T

����
Yi

Dh
Dt
þ
XN
i¼1

@q
@Yi

����
T;Yj 6¼i

�

@q
@T

����
Yi

@h
@T

����
Yi

@h
@Yi

����
T;Yj6¼i

1
CCCADYi

Dt
:

0
BBBB@ (20)

For a binary mixture, Eq. (20) is simplified to

FIG. 3. Sketch showing the interface intersecting the numerical stencil in the x
direction and how its location is included in the numerical discretization of the scalar
equations.
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!
DYO

Dt
; (21)

where �v is the mixture molar volume, andWO andWF are the molecu-
lar weights of the oxidizer species and the fuel species, respectively. All
coefficients are evaluated at constant pressure and at time nþ 1,
although it is not shown for a simpler notation. The thermodynamic
partial derivatives that appear in Eq. (21) are obtained using the ther-
modynamic model described in Appendix A. Detailed expressions to
evaluate these thermodynamic terms are available in Davis et al.34

Equation (21) is only evaluated at single-phase cells once the interface
location and the scalar fields have been updated in time. The material
derivatives Dh/Dt and DYO=Dt are obtained from the solution of the
respective non-conservative governing equations, Eqs. (18) and (19).
At interface cells, a similar evaluation of � 1

q
Dq
Dt is not straightforward,

especially for the phase occupying less volume.
Note that each fluid compressibility can be associated with

the divergence of phase-wise velocities (i.e., r �~ug ¼ � 1
qg

Dqg

Dt and

r �~ul ¼ � 1
ql

Dql
Dt ). Therefore, knowing the divergence of each phase-

wise velocity in a narrow band of cells around the interface, including
the interface cells, is necessary to determine the phase-wise velocities
used in the VOF advection algorithm and in the governing equations,
as well as the one-fluid velocity divergence from Eq. (26) used to solve
the pressure–velocity coupling. To do so, the phase-wise velocity diver-
gences are extrapolated from the real phase into a thin ghost region
across the interface.

The multidimensional extrapolation techniques presented by
Aslam96 are used to populate this narrow band of cells with character-
istic values of the compressibility of each fluid. For instance, Fig. 5

shows the two-dimensional extrapolation region for liquid-based val-
ues. The extension to a three-dimensional configuration is straightfor-
ward, and a similar definition is done to define the extrapolation
region for gas-based values. Even though the details shown in Aslam96

are based on an implementation of the extrapolation across regions
defined by a LS function, the same methodology can be adapted to a
VOF framework. Then, phase-wise velocities are obtained extending
the extrapolation method discussed in Dodd et al.65 to compressible

FIG. 4. Construction of the normal probe used to evaluate jump conditions and LTE at the interface. For simplicity, only the probe extending into the gas phase is represented
in a two-dimensional configuration. The liquid-phase normal probe is constructed in a similar manner and the extension to three dimensions is straightforward. (a) Case where
a constant spacing of Dx results in the probe node closest to the interface being defined by grid nodes belonging to different phases; and (b) Case where a constant spacing
of Dx results in a well-defined probe.

FIG. 5. Definition of the extrapolation region (dashed cells) for liquid-phase values
of fluid compressibility and phase-wise velocity in a two-dimensional mesh.
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flows. Appendix D provides more details on the extrapolation equa-
tions and how we implement them in a VOF framework.

D. Discretization of the momentum equation
and predictor-projection method

A one-fluid approach is used to solve the two-phase continuity
and momentum equations in conservative form [i.e., Eqs. (1) and (2)].
This approach, as well as the proposed method to solve the species
and energy transport equations, has a discontinuity in the velocity field
perpendicular to the interface in the presence of phase change.
However, this discontinuity is mild compared to the velocity magni-
tude around the interface. Still, phase-wise values for the velocity field
need to be used in certain terms of the momentum equation as shown
in the following lines. This methodology is a standard approach used
in the literature,64,66,93 and we favor a conservative method for global
mass and momentum.

Following the work by Dodd and Ferrante,64 fluid properties are
volume-averaged at each cell using the volume fraction occupied by
each phase as / ¼ /g þ ð/l � /gÞC, where / is any fluid property
such as density or viscosity. The one-fluid property diffuses the sharp-
ness of the interface within a region of OðDxÞ. To satisfy the normal
and tangential momentum jumps across the interface [i.e., Eqs. (7)
and (8)], the surface-tension force is added by means of a body force
active only at the interface,~Fr ¼~frdrð~x �~xCÞ.

The continuum surface force (CSF) approach from Brackbill
et al.97 extended to flows with variable surface tension98,99 is used to

replace ~fr ¼ �rj~n þrsr and the Dirac d-function as drð~x �~xCÞ
¼ jrCj. The gradient of the surface-tension coefficient tangent to the
interface is evaluated using the method described in Seric et al.,99

which takes advantage of the HF technique to evaluate rsr ¼ @r
@s1
~t 1

þ @r
@s2
~t 2 in a three-dimensional configuration. That is, the gradient at a

given interface cell is directly evaluated along two orthogonal tangen-
tial directions, s1 and s2. The reduction to a two-dimensional configu-
ration is readily available. Similar to the evaluation of j, a minimum
resolution of the interface is needed to obtain accurate results.99 Even
though the MYC method is used to evaluate the interface normal unit
vector, the approximation ~n ¼ �rC=jrCj is taken in the modeling
of the surface-tension force in the momentum equation. Therefore,
the gradient of the volume fraction provides directionality and locality
to the surface-tension force. Finally, a density scaling is used to obtain
a body force per unit volume, which is independent of the fluid den-
sity.97,98 This modification generates a uniformly distributed surface-
tension force, which improves the performance of the CSF approach
and reduces the magnitude of spurious currents at high-density ratios.

Under all these considerations, the momentum equation is
rewritten as

@

@t
ðq~uÞ þ r � ðq~u~uÞ ¼ �rpþr � %s þ q

hqi ðrjrC þrsrjrCjÞ;

(22)

with hqi ¼ 1
2 ðqG þ qLÞ, where qG and qL are the freestream gas and

liquid densities, respectively. Similar to the normal force term rjrC,
the tangential force term rsrjrCj is further simplified once the tan-
gential unit vectors,~t1 and~t2, are evaluated from the normal unit vec-
tor,~n.

The continuity–momentum coupling is addressed by using the
predictor-projection method by Chorin.100 The predictor step consists
of a first-order, semi-explicit time integration of Eq. (22) without the
pressure gradient, given by

~up ¼ qn~un

qnþ1 þ
Dt

qnþ1

�
�r � ðq~u~uÞn þr � %sn

þqnþ1

hqi ðr
nþ1jnþ1rCnþ1 þrsr

nþ1jrCnþ1jÞ
�
; (23)

where the surface-tension force term is evaluated implicitly. As shown
in Fig. 2, the interface location, the scalar fields, and the interface equi-
librium solution are updated before solving the Navier–Stokes equa-
tions. This way, the density at the new time, qnþ1, can be evaluated, as
well as the interface curvature and surface-tension coefficient, jnþ1

and rnþ1. Since the advection of the interface is performed with first-
order temporal accuracy, the global temporal accuracy of ~u and p is
limited to first order as well except in the limit where the CFL number
tends to zero.63,64 Thus, higher-order temporal integrations in Eq. (23)
(e.g., Adams–Bashforth scheme) might not add any major improve-
ment to the flow solver global performance, but may be considered in
the future. This issue is also discussed in Sec. VA for the solution of
the species and enthalpy transport equations.

After the predictor step, the projection step includes the pressure
gradient term to correct~up in order to satisfy the continuity equation
and provide~unþ1 as shown in the following equation:

~unþ1 ¼~up � Dt
rpnþ1
qnþ1 : (24)

An equation for the pressure field is constructed by taking the
divergence of Eq. (24) as

r � rp
nþ1

qnþ1

� �
¼ 1

Dt
ðr �~up �r �~unþ1Þ; (25)

where the resulting pressure field satisfies the continuity constraint
embedded in the termr �~unþ1.

Following Duret et al.,68 r �~unþ1 is evaluated by constructing a
mass conservation equation for each phase. Substituting q ¼ qg
þðql � qgÞC ¼ qgð1� CÞ þ qlC into Eq. (1) and including phase
change, the following relation is obtained:

r �~unþ1 ¼ �ð1� CÞ 1
qg

Dqg

Dt
� C

1
ql

Dql

Dt
þ _m

1
qg
� 1

ql

 !
; (26)

where the implicit notation has been dropped for simplicity. Equation
(26) reduces to r �~unþ1 ¼ � 1

q
Dq
Dt or Eq. (1) away from the interface.

At interface cells, the divergence of the one-fluid velocity field becomes
a volume-averaged fluid compressibility plus the volume expansion
(or compression) caused by the change of phase. For low-Mach-number

flows, the terms 1
qg

Dqg

Dt and
1
ql

Dql
Dt are assumed to be independent of pres-

sure. The evaluation of the fluid compressibilities has been discussed in
Sec. VC.

The split pressure-gradient method for two-phase flows proposed
by Dodd and Ferrante64 is used, where the pressure gradient is split
into a constant-coefficient implicit term and a variable-coefficient
explicit term as

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 053321 (2022); doi: 10.1063/5.0086153 34, 053321-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


1
qnþ1rp

nþ1 ! 1
q0
rpnþ1 þ 1

qnþ1 �
1
q0

� �
rp̂; (27)

with p̂ ¼ 2pn � pn�1 being an explicit linear extrapolation in time of
the pressure field and q0 ¼ minðqÞ � qG. Notice that for the type of
problems analyzed in this work, the lowest density in the domain will
always be the freestream gas density, qG. Equations (24) and (25) can
be rewritten as

~unþ1 ¼~up � Dt
1
q0
rpnþ1 þ 1

qnþ1 �
1
q0

� �
rp̂

� �
(28)

and

r2pnþ1 ¼ r � 1� q0

qnþ1

� �
rp̂

� �
þ q0

Dt
ðr �~up �r �~unþ1Þ: (29)

Dodd and Ferrante64 and Dodd et al.65 validated the substitution
from Eq. (27) with various benchmark tests. The substitution is exact
when rp̂ � rpnþ1 and approximate when rp̂ � rpnþ1. The accu-
racy of this method in predicting the pressure field is very good as
long as the pressure is smooth in time (i.e., incompressible or low-
Mach-number compressible flows). In two-phase flows, the pressure
jump across the interface might become problematic in situations of
combined high surface tension, curvature, and density ratio (i.e.,
ql=qg), in which case the time step needs to be reduced to ensure suffi-
cient temporal smoothness in p̂ and obtain a stable solution.64 This
issue is not expected to have a significant impact on the type of flows
that this model aims to analyze; however, it may deteriorate the com-
putational efficiency of the proposed method. Cifani101 and Turnquist
and Owkes102 address this issue and improve the performance of the
split pressure-gradient method at high density ratios. These works
may be considered in the future to adapt the methodology for low-
pressure configurations where mixing and phase change are relevant.

The main advantage of the split pressure-gradient method is that
Eq. (29) becomes a constant-coefficient PPE under the low-Mach-
number assumption (i.e., decoupled density and pressure). Combined
with a uniform mesh, this equation can be solved using a fast Poisson
solver based on performing a series of discrete Fourier transforms or
FFT.64,103 This pressure solver can be adapted to various sets of
boundary conditions103 (e.g., periodic or homogeneous Neumann
boundary conditions) and provides a direct solution of the pressure
field without an iterative process, achieving computational speed-ups
orders of magnitude larger than iterative solvers based on Gauss elimi-
nation [i.e.,Oð102Þ] or multigrid solvers [i.e.,Oð10Þ].

This sharp, one-fluid method is affected by the presence of spuri-
ous currents around the interface. These oscillations are numerical
and are caused by various factors that induce a lack of an exact interfa-
cial pressure balance: (a) the lack of a smooth curvature distribution
obtained with the HF method; (b) the sharp volume-averaging used to
estimate fluid properties at interface cells; and (c) the lack of a smooth
distribution of localized interfacial source terms related to mass
exchange and fluid compressibilities. How these issues impact other
parts of the computational model needs to be investigated (e.g., solu-
tion of the energy and species transport equation or the extrapolation
of phase-wise velocities). Some insights are provided in Sec. VI regard-
ing the mesh convergence of the solution and how it is affected by this
strong coupling.

Equations (23) and (29) are discretized using standard finite-volume
techniques. The viscous term, r � %s, is discretized with a second-order
central-difference method using phase-wise velocities. If the one-fluid
velocity were used in this term, an artificial pressure spike would exist
across the interface due to the velocity jump in the presence of phase
change, as discussed in Dodd et al.65 To maintain numerical stability,
accuracy, and boundedness, the convective term, r � ðq~u~uÞn, is discre-
tized using the SMART algorithm by Gaskell and Lau.104 The SMART
algorithm is up to third-order accurate in space. At interface cells, how-
ever, a hybrid method is used which alternates between the second-order
central differences and first-order upwind schemes depending on the cell
Peclet number (i.e., Pe< 2 to use central differences). For the convective
term, the one-fluid velocity must be used to capture the momentum
jump caused by vaporization or condensation as seen in Eq. (7).

Density and viscosity are volume-averaged only at interface cells
where 0 < C < 1. In the compressible framework, the gas and liquid
interface properties are chosen as representative values for the averag-
ing. Similarly, qg and ql appearing in the fluid expansion (or compres-
sion) term due to phase change in Eq. (26) are also obtained from the
local interface solution, as well as the mass flux, _m0, used to evaluate
_m. Any interface property, / (e.g., curvature), is obtained in the stag-
gered velocity cell from the following average:64

/iþ1=2;j;k ¼

/iþ1;j;k if /i;j;k ¼ 0;

/i;j;k if /iþ1;j;k ¼ 0;

1
2
ð/iþ1;j;k þ /i;j;kÞ otherwise;

8>>><
>>>:

(30)

which considers the fact that two adjacent interface cells may not exist
to evaluate the average property. Here, the location of a u-node is
addressed and the same method can be used in all the other velocity
nodes. Equation (30) is used to evaluate r, j, @r@s1 and

@r
@s2
, which only

have a non-zero value at interface cells.

E. Time step criteria and final notes on the algorithm

The time step must satisfy the CFL condition for numerical stabil-
ity in an explicit solver. A CFL condition similar to Kang et al.105 is used
here, which has been applied successfully in other works.62,68 The fol-
lowing conditions are defined to determine the time step magnitude:

s~u ¼
jujmax

Dx
þ jvjmax

Dy
þ jwjmax

Dz
;

sl ¼
2

Dx2
þ 2

Dy2
þ 2

Dz2

� �
l
q

� �
max

;

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rmaxjmax

qminminðDx2;Dy2;Dz2Þ

r
;

8>>>>>>>><
>>>>>>>>:

and

Dt~u ¼
2

s~u þ sl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs~u þ slÞ2 þ 4s2r

q ;

Dth ¼
minðDx2;Dy2;Dz2Þ

2amax
;

DtY ¼
minðDx2;Dy2;Dz2Þ

2ðDmÞmax

;

8>>>>>>>>><
>>>>>>>>>:

(31)
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where a ¼ k=ðqcpÞ. The time step is evaluated as Dt
¼ CCFLminðDt~u ;Dth;DtYÞ where CCFL ¼ 0:1–0:2 is chosen conserva-
tively low. The choice of CCFL is a numerical compromise between
numerical stability, accuracy, and computational cost.

The computational cost of this algorithm is larger than similar
algorithms for incompressible flows without phase change. Usually,
the main cost of any fluid dynamics simulation is linked to the pres-
sure solver. However, the split pressure-gradient method is a very
efficient tool to solve incompressible and low-Mach-number config-
urations. Three major necessary steps are responsible for at least 40%
of the computational cost per time step: the solution of the local
interface state, the update of fluid properties using the thermody-
namic model and the extrapolation of phase-wise fluid compressibil-
ities and velocities.

Moreover, scalability is a concern in configurations where the
interface deforms considerably, such as those aiming to study liquid
jet injection. As the interface surface area grows, more interface nodes
are added and the thermodynamic and topology complexity of the
interface increases. Moreover, the convergence rate of phase-wise
extrapolations might be reduced. Thus, the computational cost per
time step may increase considerably over time. Computational imple-
mentation details are briefly discussed in Appendix B (e.g., parallel
code implementation).

VI. RESULTS AND VERIFICATION

The results presented in this work cover the relevant characteris-
tics seen in liquid injection environments at supercritical pressure
where two phases still coexist. Simple analytical solutions including all
the physics are not available. Moreover, experiments at these condi-
tions are sparse and they either focus on the full-scale injection prob-
lem or the evaporation of isolated droplets. Due to the lack of detailed
experimental data (i.e., showing surface topology, instability growth
rates, or detailed mixing), we focus on verifying and assessing the
numerical consistency of the proposed model (e.g., grid convergence)
and address the impact of known issues such as the effect of spurious
currents around the interface or mass conservation.

Previous codes following a similar methodology have been tested
and validated in simpler scenarios (e.g., incompressible flow with or
without phase change63–65,85). Thus, the validation of the numerical
method in these cases is not shown in this section. Two validation tests
in the incompressible limit are presented in Appendix E. Each part of
the code (e.g., thermodynamic model and VOF advection algorithm)
has been validated independently.

Section VIA verifies the code against a previous one-dimensional
study. Appendix D discusses that the extrapolation of the fluid com-
pressibilities may be done in a constant fashion or in a linear fashion.
The results presented in Sec. VIA are obtained with a linear extrapola-
tion, whereas the results from Secs. VI B–VIF follow a constant
extrapolation to ensure a stable solution.

A. One-dimensional transient flow near the liquid–gas
interface

The transient behavior around a liquid–gas interface with zero
curvature has been analyzed at various pressures using a two-
dimensional configuration with an initially straight interface and no
shear flow. A thorough analysis of this problem is presented in
Poblador-Ibanez and Sirignano,17 where a simpler one-dimensional

code is used. The main differences between both approaches are the
following. Here, the interface is allowed to move as mass exchange and
volume expansion occur while the full set of governing equations is
solved. On the other hand, Poblador-Ibanez and Sirignano17 solve the
diffusion-driven problem relative to the interface by fixing its location
and assuming pressure to be constant throughout the entire domain.
Thus, the momentum equation is not solved and the velocity field is
directly obtained from the continuity equation.

The problem configuration consists of a liquid n-decane at TL
¼ 450K sitting on a wall surrounded by a hotter gas (i.e., pure oxygen)
at TG ¼ 550K. Without an energy source, the highest temperature in
the domain is bounded by TG, which is below the critical temperature
of n-decane (i.e., approximately 617.7K). With both fluids initially at
rest, the liquid–gas interface will reach a state of thermodynamic equi-
librium as oxygen dissolves into the liquid and n-decane vaporizes.
The initial interface location is 50lm away from the wall. Volume
expansion or compression due to the mixing process and phase
change generates a velocity field perpendicular to the interface.
Periodic boundary conditions are imposed in the y direction, while
wall boundary conditions are imposed at x¼ 0 and an open-boundary
is imposed sufficiently far away from the interface in the gas phase.
With no interface perturbation or shear flow, the two-dimensional
code must predict a one-dimensional solution. Four different pressures
are analyzed: one subcritical case at 10 bar and three supercritical cases
with 50, 100, and 150 bar.17 Note that the critical pressure for n-decane
is approximately 21.03 bar. A mesh size of Dx ¼ 200 nm and time
step of Dt ¼ 2 ns are used for all pressures.

A direct comparison between the results from the present work
and the results shown in Poblador-Ibanez and Sirignano17 is not possi-
ble because the thermodynamic model is slightly different. Here, a vol-
ume correction is implemented to enhance the accuracy of the SRK
equation of state, whereas this correction is not added in Poblador-
Ibanez and Sirignano.17 Thus, different fluid properties are predicted,
especially in the liquid phase. Nevertheless, a qualitative comparison is
possible with reasonable agreement.

The results are one-dimensional. No indication of a deviation or
instability is found. Figure 6 shows the temporal evolution of density
profiles at 150 bar. Overall, the results look very similar to those shown
in Poblador-Ibanez and Sirignano17 except for minor differences
caused by the improvement in the thermodynamic model. Mixing
in the gas phase agrees in both works, where the density profile [see
Fig. 6(b)] extends about 7–9lm into the gas phase at t ¼ 10ls. As
the mixing layers grow, the interface tends to a steady-state solution as
reported in Poblador-Ibanez and Sirignano17 [see Fig. 7(b)]. Similar
works dealing with a two-dimensional laminar mixing layer show the
same trend.34,35 Nevertheless, this behavior may not be true in more
complex flows where the interface deforms.

The volume correction in the SRK equation of state is negligible
in the gas phase, whereas a stronger impact is seen in the liquid phase.
Moreover, this improved thermodynamic model results in slightly
different interface solutions compared to Poblador-Ibanez and
Sirignano.17 For instance, the predicted liquid density [Fig. 6(a)] is
larger than the one shown in Poblador-Ibanez and Sirignano,17 but it
is also more accurate when compared to reference data from NIST.
Without the volume correction in the SRK equation of state, the pure
liquid density at 150 bar is closer to 545 kg/m3. Additionally, lower
interface temperatures are predicted once liquid fluid properties are
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evaluated more accurately. This change in the interface solution results
in a slightly different evolution of the energy and species mixing.

Finally, the two main assumptions considered in Poblador-
Ibanez and Sirignano17 are verified. Throughout the simulation, pres-
sure remains nearly constant and the velocity field is mainly driven by
density changes caused by mixing. Moreover, Fig. 7(a) shows the inter-
face location as time marches. Because under this problem configura-
tion mass exchange weakens as mixing occurs, the interface
displacement is actually negligible. The maximum interface displace-
ments after 50 ls are of the order of 100nm, which are similar to the
grid spacing used in this problem and negligible compared to the
thickness of the diffusion layers. In Fig. 7(a), the interface location
according to the results from Poblador-Ibanez and Sirignano17 has

been estimated by integrating the interface velocity, uC, over time.
This velocity is evaluated by shifting the velocity field to satisfy
uðx ¼ 0Þ ¼ 0. Then, uC is obtained from the mass balance across the
interface [i.e., Eq. (5)]. On the other hand, the present work uses infor-
mation of the volume fraction distribution to obtain the interface loca-
tion at any given time. Because of the changes in the interface solution,
the two approaches show slightly different results.

The direction of the interface displacement discussed in
Poblador-Ibanez and Sirignano17 is also confirmed. At 10 bar, net
vaporization is strong with very little dissolution of oxygen into the liq-
uid phase. Thus, the interface recedes and the overall liquid volume
decreases. However, as pressure increases, the dissolution of oxygen
into n-decane is enhanced, the interface temperature is higher and

FIG. 6. Temporal evolution of the density profiles for the one-dimensional transient flow near a liquid–gas interface for an oxygen/n-decane binary mixture at p¼ 150 bar.
Verification against the one-dimensional solution from Poblador-Ibanez and Sirignano17 is shown. (a) Liquid density and (b) gas density.

FIG. 7. Temporal evolution of the interface location and temperature at different pressures for the one-dimensional transient flow near a liquid–gas interface for an oxygen/
n-decane binary mixture. Depending on the ambient pressure, net vaporization (V) or net condensation (C) occurs across the interface. Verification against the one-dimensional
solution from Poblador-Ibanez and Sirignano17 is shown. (a) Interface location and (b) interface temperature.
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liquid volume expansion occurs near the interface. At 50 bar, even
though the interface presents net vaporization, it is not strong enough
to compensate for the liquid volume expansion. At 100 and 150 bar,
both local volume expansion and net condensation contribute to the
overall increase in liquid volume. This feature of high-pressure, two-
phase flows may cause the interface to present net condensation and
net vaporization simultaneously at different locations depending on its
deformation and the heat flux into the interface.19,20

B. Two-dimensional capillary wave

The capillary wave problem is an appropriate test to validate the
relaxation time of a perturbed two-phase interface driven by capillary
forces. Gravity is neglected here, although the analytical solution of
this problem for incompressible flows with infinite depth proposed by
Prosperetti106 may include it. Dodd and Ferrante64 validate their two-
phase code for incompressible flows without phase change and analyze
the capillary wave problem with evaporation to verify the spatial con-
vergence of their two-phase code.65

A similar analysis is performed for the same binary mixture of
oxygen and n-decane seen in Sec. VIA. Each phase has the same initial
temperature and composition, but the analyzed thermodynamic pres-
sures vary between 10, 50, 100, and 150 bar. The two-dimensional
domain is a rectangular box of 30lm wide with a liquid layer of
20lm depth. The liquid–gas interface is spatially perturbed with a
sinusoidal wave of 1lm amplitude and 30lm wavelength, while both
fluids are initially at rest. The amplitude-to-wavelength ratio of 1/30
can be considered a small interface perturbation. The height of the
domain must contain the mixing region in both phases during the
analyzed times. For 100 and 150 bar, a height of 60lm is enough. For
50 bar, it is increased to 70lm and, for 10 bar, to 100lm. Periodic
boundary conditions are imposed in the x direction (i.e., tangential to
the interface), an open-boundary (i.e., outflow conditions) is imposed
in the y direction at the end of the gas-phase domain and no-slip wall
boundary conditions are imposed at the bottom of the liquid layer.

The mixing in both phases is similar to the one-dimensional case
since the interface perturbation is small and there is no shear flow.
The relaxation of the interface deformation caused by capillary forces
drives the overall picture further toward a one-dimensional solution.
Nevertheless, this transient process allows us to study the accuracy
and resolution of the numerical model.

1. Spatial convergence

The 150-bar case is chosen to analyze the spatial convergence of
the numerical model under interface deformation. The temporal con-
vergence is expected to be first order because of how the equations are
discretized. Thus, it is not analyzed here and we rely on a sufficiently
small CFL condition to minimize temporal errors. Table I presents the
four different uniform meshes that are studied, and Fig. 8 shows
results of the interface geometry and equilibrium solution at 19 ls
after sufficient relaxation of the diffusion layers.

The solution of LTE and jump conditions along the interface is
sensitive to the mesh resolution. Although other interface properties
may be used, the profiles of temperature, net mass flux per unit area,
and oxygen mass fraction on both sides of the interface are shown. As
the mesh is refined, the mixing around the interface is captured better
and the enthalpy and concentration gradients obtained using the

normal probe technique explained in Sec. VB become more accurate.
Moreover, the PLIC method tends to a more continuous interface
reconstruction. These improvements translate into a smoother distri-
bution of fluid properties along the interface as seen in Figs. 8(b), 8(c),
and 8(f).

The apparent deviation between two consecutive meshes is
only enlarged by the scale of the figures. Although mesh M1 (i.e., Dx
¼ 0.3lm) might look like an outlier due to a poorer resolution, espe-
cially of the liquid phase mixing region, the normalized errors or dif-
ferences in the solution between two consecutive meshes are of the
order of 1% or less. A thorough analysis shows the normalized errors
converge with a first-order rate or lower, which is expected given the
complexity of the numerical approach. For example, the normalized
errors in the interface temperature at x ¼ 7:5lm from M2 to M3 and
from M3 to M4 are 4:526� 10�4 and 2:942� 10�4, respectively,
which correspond to a convergence rate of 0.62. On the other hand,
the convergence rate of the interface temperature at x ¼ 22:5lm is
even lower (i.e., 0.22). Other works with simpler models to determine
the interface properties also report similar issues.65,85 Even though
one-dimensional interfaces show good grid independence properties,
limited spatial convergence appears once two-dimensional or three-
dimensional interfaces are analyzed.

Although the matching solution along the interface looks
smoother as the mesh is refined, the net mass flux across the interface,
_m 0, is not [see Fig. 8(f)]. As explained in Poblador-Ibanez et al.,35 _m0 is
very sensitive to small changes in equilibrium composition or temper-
ature. Thus, imperceptible perturbations are captured in _m 0.
Moreover, the normal probe used to determine the LTE and jump
conditions is built on the PLIC interface. It is not guaranteed that the
PLIC interface will be continuous across cells and PLIC loses any
information on local interface curvature (i.e., the interface is locally
represented by a planar surface). Therefore, the construction of the
normal probes is in line with the observed oscillations.

Similar oscillations appear when evaluating the curvature and the
gradient of the surface-tension coefficient [see Figs. 8(d) and 8(e)].
Even though the interface shape and the distribution of the surface-
tension coefficient look smooth, as seen in Figs. 8(a) and 8(b), j and
rsr are evaluated using the HF method. This method is known to
generate a non-smooth distribution of j albeit converging with mesh
refinement, as discussed in Sec. IVB. Moreover, VOF methods using a
one-fluid approach to solve the momentum equation present some
degree of oscillations in the velocity and pressure fields near the inter-
face due to the sharp treatment of fluid properties and localized body
force terms.

Overall, the oscillations of certain interface parameters contribute
to the generation of spurious currents around the interface. The effect

TABLE I. Mesh properties used in the analysis of a two-dimensional capillary wave
at supercritical pressures. The number of cells per wavelength or amplitude refers to
the initial configuration of the liquid–gas interface.

Mesh M1 M2 M3 M4

Dx (lm) 3/10 2/10 1/10 1/20
Cells/wavelength 100 150 300 600
Cells/amplitude 3.33 5 10 20
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of these numerical perturbations on the actual development of the liq-
uid surface must be assessed. At this point, we accept this problem as
long as it does not cause unstable numerical oscillations. The cases
analyzed in this work present an interface evolution that follows a
physical explanation. Moreover, in problems involving the injection of
liquid jets, the magnitudes of these spurious currents are negligible
compared to the jet velocity.

As seen in Figs. 8(a) and 9, the slow spatial convergence of the
interface matching solution and the small oscillations in some of the
parameters have little effect on the relaxation of the interface ampli-
tude. Figure 9 shows the temporal evolution of the vertical position of
the interface at x ¼ 7:5 lm, which corresponds to the initial location
of the wave crest, and at x ¼ 22:5 lm, which is the location of the ini-
tial wave trough. Figures 8(a) and 9 verify the grid convergence of the
numerical modeling with regard to the interface displacement as the
curves representing the surface’s shape and position overlap each other
from meshM1 toM4.

The total change in liquid volume and mass is shown in Fig.
10(a). Note that in the two-dimensional problems analyzed in this
paper, a third dimension is considered for convenience with a depth of
1m. Then, surface areas or liquid volumes are discussed. Convergence
with mesh refinement is observed, especially in the total liquid volume.
The strong condensation during the relaxation of the sharp initial con-
ditions is well captured with meshes M3 andM4. However, differences
in the mass flux and the accuracy to which density variations are cap-
tured cause the curves to deviate over time. Grid convergence is

observed, but with a first-order rate or lower due to the influence of
the interface solution in the mass exchange rates.

Looking at mass errors in the liquid phase, the total amount of
mass that condenses at the interface [see Fig. 10(b)] also converges

FIG. 8. Interface geometry and matching solution of the two-dimensional capillary wave at t ¼ 19ls for the 150 bar case. (a) Amplitude; (b) temperature and surface-tension
coefficient; (c) oxygen mass fraction in the liquid and gas phases; (d) curvature; (e) gradient of the surface-tension coefficient; and (f) net mass flux.

FIG. 9. Interface amplitude relaxation of the two-dimensional capillary wave at
150 bar. The evolution of the wave’s amplitude at x ¼ 7:5lm (initial wave crest
location) and at x ¼ 22:5lm (initial wave trough location) is shown.
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with mesh refinement and should be equal to the difference between
the total liquid mass at a given time and the initial liquid mass. Here,
the total liquid mass is estimated at every time step as mL

¼
P

i;j;kqi;j;kCi;j;kDxDyDz, with qi;j;k being the interface liquid density,
ql, at interface cells. This simplification at interface cells introduces small
errors when evaluating mass conservation. On the other hand, the total
condensed mass is obtained as mcond ¼ �

Ptfinal
tinitial

P
i;j;k _m0ACDt. Recall

_m0 is only non-zero at interface cells and AC represents the area of the
local interface plane at a given cell.

Even though both approaches should be equivalent, they mani-
fest the issues with mesh resolution when capturing the density field
and solving the jump conditions and LTE at the interface. Figure 10(b)
shows that the mass error evaluated as Emð%Þ ¼ 100ðmL �minitial

�mcondÞ=minitial is reduced with mesh refinement. Although mass
errors exist, the overall thermodynamics of the interface can be captured
with reasonable accuracy (e.g., identify regions of high or low mass
exchange rate or whether condensation or vaporization occurs). These
errors are shown to be larger in liquid injection problems as continuous
interface deformation generates smaller liquid structures (see Sec.
VIE1). Thus, a fixed mesh resolution may lose accuracy in capturing
density variations and a smooth interface solution. Note that the total
mass exchanged across the interface only represents about 0.46% of the
total liquid mass in the amount of time analyzed in this problem.

The results presented in this section highlight the complexity of
the numerical modeling for two-phase flows at supercritical pressures,
but at the same time verify the consistency of the methodology imple-
mented in this work. Searching for efficient and reliable methods
translates into a limited grid convergence rate for many interface
parameters. Therefore, the mesh used in atomization simulations must
be a compromise between computational cost and interface accuracy
(i.e., geometry and solution of LTE and jump conditions).

2. Pressure effects

The two-dimensional capillary wave has been analyzed for the
same four pressures used in Sec. VIA (i.e., 10, 50, 100, and 150 bar)

with the uniform mesh M3 (i.e., Dx ¼ 0:1lm). The initial conditions
used for all pressures are identical to those previously discussed. The
goal here is to present the main differences in the interface thermody-
namics as pressure transitions from subcritical to supercritical values.

The total volume and mass change of the liquid phase with time
is very similar to the one-dimensional problem described in Sec. VIA
(see Fig. 11). Note that the curves representing the volume percentage
change at 50 bar and the mass percentage change at 150 bar coinciden-
tally overlap. At 50, 100, and 150 bar, the liquid phase expands near
the interface and, together with condensation in the 100 and 150 bar
cases, the total liquid volume increases with time. On the other hand,
vaporization drives the reduction of the liquid volume at 10 bar.
Regarding the total liquid mass change over time, the thermodynamic

FIG. 10. Temporal evolution of the total liquid volume, the total liquid mass, the total net mass exchanged across the interface, and the estimated mass error for the two-
dimensional capillary wave at 150 bar. (a) Total liquid volume and total liquid mass, and (b) total mass condensed and mass error.

FIG. 11. Temporal evolution of the change in liquid volume and liquid mass for the
two-dimensional capillary wave at 10, 50, 100, and 150 bar using mesh M3.
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transition whereby net vaporization turns into net condensation as
pressure increases is observed.

The deformation of the interface in the capillary wave test shows
some of the features of the interface varying thermodynamic behavior at
high pressures. As seen in Fig. 12, the effects of compressed mixing
layers can cause the interface to vaporize and condense at different loca-
tions simultaneously. As noted in Poblador-Ibanez and Sirignano,19

regions of compressed (heated) gas may present stronger vaporization
or weaker condensation, whereas regions of compressed liquid show
weaker vaporization or stronger condensation, depending on the ambi-
ent pressure. In configurations where mass exchange across the interface
is already weak, such as at 50bar, small interface deformations may trig-
ger this phase-change reversal.

Another important feature of high-pressure, two-phase flows is
the reduction of surface-tension forces with a subsequent increase in
the time for dynamic relaxation to a smaller surface area per unit vol-
ume. Figure 13 shows the relaxation of the wave amplitude over time
at different pressures. The vertical position of the interface at the initial
wave crest location of x ¼ 7:5lm is shown in Fig. 13(a), and
the interface vertical location at the initial wave trough location of
x ¼ 22:5lm is shown in Fig. 13(b). Notice the stronger reaction to
the sharp initial conditions at 10 bar, where the interface displacement
deviates considerably from the behavior at higher pressures. This pat-
tern may be caused by a combination of strong initial vaporization at
10 bar and the numerical method sensitivity to high density ratios,
ql=qg . Nevertheless, clear conclusions can be extracted.

FIG. 12. Interface geometry and matching solution of the two-dimensional capillary wave at t ¼ 24:94ls for the 50 bar case using mesh M3. (a) Interface amplitude, and (b)
net mass flux.

FIG. 13. Interface amplitude relaxation of the two-dimensional capillary wave at 10, 50, 100, and 150 bar using mesh M3. (a) At x ¼ 7:5lm (initial wave crest location) and
(b) at x ¼ 22:5lm (initial wave trough location).
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The effect of volume expansion is noticed as the wave amplitude
presents a drift to higher y values as pressure increases. Moreover,
higher surface-tension forces at lower pressures cause higher-
frequency interface oscillations. The liquid viscosity near the interface
drops as pressure increases because of the enhanced dissolution of the
lighter gas species. Despite this reduction in viscosity, the coupled
dynamic system produces similar damping of the wave amplitude for
all analyzed pressures. Reference values of the surface-tension coeffi-
cient and the interface liquid and gas densities and viscosities are avail-
able in Davis et al.34 In that work, the same thermodynamic model
used here is implemented, but no interface deformation is considered.
Still, the small deformations in the capillary wave test do not change
the interface solution significantly.

C. Two-dimensional droplet under forced convection

The temporal evolution of a two-dimensional cylindrical droplet
under forced convection at high pressures is considered to verify the
dynamical behavior of the two-phase solver and the interface

thermodynamics. The same problem is analyzed in Deng et al.,107 but
where the liquid droplet is incompressible and the thermodynamic
model is built on a Redlich–Kwong (RK) equation of state.108

A pure n-heptane droplet with a diameter of 0.2mm and an ini-
tial temperature of 300K is immersed in a hotter nitrogen gaseous
stream at 500K, moving with a freestream velocity of 4m/s. The drop-
let is initially at rest. The ambient pressure is 40 bar, which is supercrit-
ical for the fuel species. The critical temperature and pressure of n-
heptane are, respectively, 540K and 27.4 bar. Deng et al.107 initialize
the gaseous phase everywhere with a uniform velocity equal to the
freestream velocity. However, this initialization is physically question-
able, especially at the droplet’s surface, and, in fact, our pressure solver
immediately corrects the velocity field by instantaneously accelerating
the droplet. To avoid the issue, we initialize the velocity field in the gas
phase with the potential flow solution around a stationary circle and
obtain good agreement with the droplet displacement shown in the
reference.

The computational domain has a length of 5mm and a height of
2mm. Uniform inflow boundary conditions are considered at the right
boundary and outflow boundary conditions are assumed across the
other three boundaries. The droplet is initially centered at a distance of
1mm from the inlet and at the midpoint between the top and bottom
boundaries. Three different uniform meshes are considered, summa-
rized in Table II.

Figure 14 shows the displacement of the droplet and its deforma-
tion over time compared to the results presented in Deng et al.107 The
incoming gas phase flows from right to left. Laboratory coordinates
are used where the droplet is initially centered at x ¼ y ¼ 0. Good

TABLE II. Mesh properties used in the analysis of a two-dimensional cylindrical
droplet at supercritical pressures. The number of cells per diameter refer to the initial
configuration of the liquid–gas interface.

Mesh D1 D2 D3

Dx (lm) 4.167 2.778 1.852
Cells/diameter 48 72 108

FIG. 14. Surface deformation of the two-dimensional cylindrical droplet with three mesh sizes D1, D2, and D3 compared against the reference solution from Deng et al.107

Plotted times correspond to 0.04, 0.08, 0.12, 0.16, 0.20, and 0.23 ms. The interface shape is represented by the centroid location of each interface plane obtained from
PLIC.
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agreement is found in the displacement of the upstream side of the
droplet. The early snapshots show the reference solution moving
slightly faster. Such difference may be explained by the different pure
liquid density predictions between the equations of state, about
580 kg/m3 with the RK equation and about 693 kg/m3 with the
volume-corrected SRK equation. For both models, the pure nitrogen
gas phase density is about 26 kg/m3.

The deformation of the droplet is different. This deviation is
not unexpected since our model considers varying fluid properties
in the liquid phase, where density and viscosity drop considerably
as nitrogen dissolves and the liquid heats. Such a scenario is also
discussed in Sec. VI E 2 for the two-dimensional planar jet test. As
observed in Fig. 15, the liquid density and viscosity drop across the
mixing layer inside the droplet, especially near the top and bottom
edges, where higher heat transfer increases the surface temperature
and enhances the dissolution of nitrogen. Note that the liquid vis-
cosity may drop by a factor of two. The pure gas viscosity is
2:605 � 10�5 Pa s and the pure liquid viscosity is 5� 10�4 Pa s.
Such variation in fluid properties results in an increased transverse
stretching of the droplet compared to the incompressible reference
solution.

Additionally, some directional bias in the numerical solution
affects the evolution of the droplet’s top edge. The code alternates
sweeping directions to minimize such bias. As the mesh is refined, a
symmetric behavior is recovered. Nonetheless, there has not been a
similar problem in the two- and three-dimensional planar jet solutions
presented in Secs. VI E and VIF.

The apparent difference in droplet volume (i.e., area in two
dimensions) between both solutions is explainable. During the early
times, the volume contained by both solutions is approximately the
same. Later, greater differences exist. Regardless of the mass-
conservation properties of the interface tracking/capturing approach,
there exist differences of physical nature. The compressible solution

predicts volume expansion up to t � 0:5 ms despite the droplet’s
vaporization, caused by the heating of the liquid phase and the dissolu-
tion of nitrogen. Moreover, the vaporization rates predicted by our
model are substantially smaller.

Figure 16 presents the evolution over time of the vaporization rate
and an average mass flux per unit area. Substantial vaporization occurs
during the adjustment of the initial conditions, but vaporization rates
rapidly decrease and even show some transient net condensation due to
the high-pressure environment. After some time, the mass flux per unit
area stabilizes to a constant value, as reported in Deng et al.,107 and the
vaporization rates increase with the growth of the surface area.

FIG. 15. Liquid density and viscosity of the two-dimensional cylindrical droplet at t¼ 0.12 ms. The results obtained with mesh D3 are shown. (a) Liquid density and (b) liquid
viscosity.

FIG. 16. Temporal evolution of the vaporization rate and average mass flux per unit
area for the two-dimensional cylindrical droplet.
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Nonetheless, the solution of the interface matching relations and LTE,
coupled with the volume-corrected SRK equation of state, predicts
vaporization rates at least an order of magnitude lower than those
reported in Deng et al.107

This result does not come as a surprise. The RK equation of
state predicts vapor pressures of substances with high acentric
factors poorly76 (i.e., like n-heptane), which in turn affects the
predicted equilibrium solutions for mixtures including such com-
ponents. Zhu and Aggarwal73 detail this problem in binary mix-
tures of n-heptane and nitrogen and highlight the superior
performance of the SRK equation of state. The deviations intro-
duced by the RK model overestimate the liquid species’ vaporiza-
tion and the gaseous species’ dissolution at high pressures. At the
same time, the heat of vaporization necessary for the change of
phase is underestimated by a varying factor between 2 and 10
times less than the SRK model.73

Furthermore, it is worth highlighting the discrepancies in the
reported mixture critical temperature for the considered binary mix-
ture at 40 bar. Deng et al.107 report a critical temperature of 470K,
while the RK model implemented in Zhu and Aggarwal73 suggests a
critical temperature between 515 and 540K for a pressure of 40 bar.
Such difference could aggravate the excess vaporization. On the other
hand, the critical temperature predicted by our SRK model is about
538K, in line with previous estimates.73

D. Three-dimensional droplet evaporation

The vaporization of a three-dimensional n-heptane droplet
immersed in a quiescent environment of hotter gaseous nitrogen is
analyzed. Experimental results for the evaporation of this fuel droplet
subject to a wide range of ambient conditions are presented in
Nomura et al.109 The analyzed pressures vary from 1 to 50 bar, while
the nitrogen gas temperature varies from 400 to 800K. That is, a wide
range of sub- and supercritical conditions is investigated. These experi-
mental results have been used to validate droplet models under tran-
scritical conditions, such as those from Zhu and Aggarwal73 and
Zhang.110

Here, we focus on the evaporation of the n-heptane droplet at
transcritical conditions. The initial droplet diameter and temperature
are, respectively, D¼ 0.5mm and 300K. The ambient nitrogen is at
50 bar and 493K. The computational domain is a cubic box of size
6.4D. The computational cost constrains the domain size since long
physical times are required to achieve significant volume reduction.
Furthermore, the simulations are performed by using the symmetry
planes. In other words, only 1/8th of the spherical droplet is consid-
ered. Outflow boundary conditions are imposed along the non-
symmetric boundaries. Details on the uniform mesh resolution are
presented in Table III, where the resolution recommendation from
Baraldi et al.63 has been followed to limit the impact of spurious cur-
rents and other geometrical errors on the droplet’s surface.
Nonetheless, as the liquid vaporizes, such a level of resolution will be
lost.

Figure 17 presents the evolution of the droplet diameter in a
ðd=DÞ2 vs time plot, where D is the initial droplet diameter defined
earlier. Due to computational constraints, results for an extended time
are only available for mesh S1. The instantaneous droplet diameter, d,
is obtained from the liquid volume data (i.e., V ¼ pD3=6) since the
droplet remains spherical at all times. Spurious currents exist but do
not affect the droplet’s shape nor the surface regression under vapori-
zation. A deviation between the numerical results and the

TABLE III. Mesh properties used in the analysis of a three-dimensional spherical
droplet evaporating at supercritical pressures. The number of cells per diameter refer
to the initial configuration of the liquid–gas interface.

Mesh S1 S2 S3

Dx (lm) 20.83 15.63 12.5
Cells/diameter 24 32 40

FIG. 17. Temporal evolution of ðd=DÞ2 for the three-dimensional vaporizing n-heptane droplet. (a) ðd=DÞ2 evolution obtained with mesh S1 is compared to experimental
data.109 The d2-law slope agrees after the initial transient process; and (b) ðd=DÞ2 evolution during the early transient volume increase obtained with meshes S1, S2, and
S3.
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experimental data is observed in Fig. 17(a). Initially, a transient process
occurs where the droplet volume increases under thermal expansion
and the enhanced dissolution of nitrogen, counteracting the surface
regression due to vaporization. Then, the droplet heats and a classical
d2-law is recovered where the square of the diameter decreases linearly
over time.

The apparent translation of the ðd=DÞ2 curve is also reported in
Zhang110 when validating against experimental data from Nomura
et al.109 It is concluded that the experimental setup induces enhanced
vaporization of the droplet when it is moved from the generator to the
test position. When including this displacement in the droplet model,
excellent agreement with the experimental data are found.110 On the
other hand, the droplet model from Zhu and Aggarwal73 using the
SRK equation of state predicts a much better agreement. However, liq-
uid volume expansion is not considered, which might overestimate the
surface regression during the early times.

Note that the d2-law slope compares to the experimental data,
which further corroborates the accuracy of the phase change predic-
tions using the thermodynamic model based on the volume-corrected
SRK equation of state. With a less accurate thermodynamic model,
such as one based on the RK equation of state, surface regression at
transcritical conditions is overestimated and the d2-law slope deviates
considerably from the experimental data.73 A similar discussion has
been provided in Sec. VIC.

Finally, Fig. 17(b) shows the effect of mesh resolution during the
early transient volume increase. Mesh refinement predicts more liquid
volume expansion, and the onset of vaporization-dominated surface
regression is delayed. This behavior is explained by our model better
resolving the initial thin diffusion layers in the liquid phase as the
mesh is refined. Mesh convergence of the evolution of ðd=DÞ2 is
observed.

E. Two-dimensional planar jet

A temporal study of a symmetric two-dimensional planar jet is
performed to demonstrate the ability of the numerical model in cap-
turing the interface deformation and the relevant high-pressure phys-
ics during the liquid injection. Sustained liquid surface deformation
occurs in this test. Although planar jets might develop an antisymmet-
ric behavior,28 the test problem is constrained to the symmetric config-
uration to limit the computational cost.

The jet half-thickness is 10lm, and the interface is initially per-
turbed with a sinusoidal wave of 30lm wavelength and 0.5lm ampli-
tude. The choice of wavelength is made following previous works in
the incompressible and high-pressure weakly compressible frame-
works.19,27,28 A thin velocity distribution of a few micrometers (i.e.,
about 6lm) is imposed around the interface, where the streamwise
velocity varies from 0m/s in the liquid phase to 30m/s in the gas phase
with a hyperbolic tangent profile following the equation uðyÞ
¼ 15ðtanh½6:5� 105ðy � 10� 10�6Þ� þ 1Þ. Periodic boundary con-
ditions are imposed in the streamwise direction, and outflow boundary
conditions are imposed in the gas phase along the top boundary of the
numerical domain. The top boundary is sufficiently far from the two-
phase mixing region to not affect the results. The thermodynamic
pressure is 150 bar, and the liquid jet is initially composed of pure n-
decane at 450K and the surrounding gas is pure oxygen at 550K.
Only one wavelength is enclosed in the computational domain and
periodicity in the streamwise direction may be used to plot the results.

The low-Mach-number domain is verified using the thermody-
namic model. At this high pressure, the speed of sound in the gas
phase obtained with the thermodynamic model is approximately
450m/s. Therefore, a gas velocity of 30m/s results in a Mach number
ofM � 0:0667. The development of a compressible pressure equation
(not the PPE utilized in this work) shows that compressible terms (i.e.,
wave-like equation) scale with M2 � 0:004 44 	 Oð10�3Þ, which can
be reasonably neglected. Faster jet velocities up to 100m/s could be
analyzed in future works with M2 	 Oð10�2Þ as the limit before the
low-Mach-number model needs to be revised.

1. Mesh resolution and mass conservation

The results presented in Sec. VI B show good mesh convergence
and mass conservation properties for configurations with small defor-
mations. In other words, situations where the mesh resolves the shape
of the liquid with high accuracy at all times. However, liquid atomiza-
tion problems present a cascade process whereby smaller and more
complex liquid structures develop before they break up into ligaments
and droplets.

An analysis of mesh dependence both in the liquid surface defor-
mation and mass conservation properties is presented in this section.
Three different uniform mesh sizes between M3 and M4 (see Table I)
are analyzed. Their characteristics are presented in Table IV.

Figures 18 and 19 show the evolution of the temperature field
and the interface deformation obtained with each mesh J1, J2, and J3.
For the early times (i.e., t � 4:5 ls), detailed close-ups of the interface
perturbation are shown. A broader picture is presented once the liquid
deformation becomes chaotic. The three meshes show almost an iden-
tical evolution up to t � 1:5ls. Then, the coarser mesh J1 starts to
deviate from J2 and J3, as seen in the snapshots at 2 ls. Deviations
between J2 and J3 start to appear after 2.5 ls. Overall, the qualitative
evolution of the interface is very similar in J1, J2, and J3, even for lon-
ger times. Deviations are observable once small liquid structures, with
respect to the mesh size, develop (e.g., high local curvature). These
poorly resolved regions suffer from less accurate interface geometrical
and thermodynamic properties, as well as some simplifications to the
numerical methodology that are implemented to allow for extensive
temporal development. Therefore, the liquid surface may evolve differ-
ently once these mesh constraints appear. Another important consid-
eration relates to the variation of fluid properties at these high
pressures. Compared to grid-independence studies in two-phase
incompressible flows, the resolution with which, for instance, the
variable-density field is captured also has an impact in the dynamics of
the liquid phase. Thus, many more factors contribute to the mesh per-
formance. Some solutions to this problem exist, like using local mesh
refinement near these under-resolved regions. However, they are not

TABLE IV. Mesh properties used in the analysis of a two-dimensional planar liquid
jet at supercritical pressures. The number of cells per wavelength or amplitude refers
to the initial configuration of the liquid–gas interface.

Mesh J1 J2 J3

Dx (lm) 1/10 1/15 1/20
Cells/wavelength 300 450 600
Cells/amplitude 5 7.5 10
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FIG. 18. Temperature plots and interface deformation at 150 bar for the two-dimensional planar jet with three mesh sizes J1, J2, and J3. Plotted times correspond to 1, 2, 3,
and 4 ls. The interface location is highlighted with a solid black curve representing the isocontour with C¼ 0.5.
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pursued here to avoid increased modeling complexity. Nevertheless,
the mesh cannot be refined indefinitely because of computational and
physical constraints.

A mass conservation analysis is performed for the liquid jet.
Mass errors are evaluated as defined in Sec. VIB 1. A worse perfor-
mance than the standing capillary wave problem is observed. The gen-
eration of smaller liquid structures typical of atomization problems is
problematic for fixed meshes. Not only the evolution of the liquid sur-
face is affected, but also mass-conservation properties suffer. J1 is the
worst performing mesh, with considerable deviations from J2 and J3
early in the simulations. J2 and J3 present a similar performance until
the liquid mass evolution starts to deviate substantially (see Fig. 20).
Total liquid volume remains nearly identical up to 6 ls. However,

deviations in total liquid mass and total net mass condensed across the
interface appear much sooner, approximately between 3 and 4 ls.
Mass errors are below 0.5% up to 4 ls approximately, and then, they
increase indefinitely as the deformation cascade develops. The mass
errors, as defined in this work, are fairly negligible compared to the
total liquid mass. During the analyzed times, the total mass exchanged
across the interface only represents about 0.42% of the liquid mass.

Note that these errors are mainly related to a worse resolution of
the liquid density field, the interface geometry and its equilibrium
state. For example, as surface area grows and smaller structures form,
more interface cells exist and their mass is approximated by consider-
ing the interface liquid density only. They do not limit the ability of
the model to predict condensation and vaporization rates with

FIG. 19. Temperature plots and interface deformation at 150 bar for the two-dimensional planar jet with three mesh sizes J1, J2, and J3. Plotted times correspond to 5, 6, 7,
and 8 ls. The interface location is highlighted with a solid black curve representing the isocontour with C¼ 0.5.
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reasonable accuracy, even for small liquid structures. As seen in Fig.
20, the total mass exchanged across the interface results in net conden-
sation up to 6 ls, with the liquid shape still being well-defined with
none or minimal coalescence and breakup. Nevertheless, as thinner
ligaments develop, the total liquid mass drops.

The analysis presented in this section suggests that achieving good
mass conservation properties and grid independence in the evolution of
the liquid shape becomes a greater challenge than similar VOF codes
used in incompressible two-phase flows. Computational costs and the
physics limit how fine the mesh can be; thus, a compromise between
numerical performance, physical coherence (i.e., avoiding a mesh size
that enters the phase non-equilibrium transition layer across the inter-
face), and simulation goals is required. If computational cost is not an
issue, mesh J3 is preferred under this problem configuration. However,
mesh J2 could be used in favor of cheaper three-dimensional computa-
tions with a similar problem configuration.

2. Supercritical pressure effects

A summary of the main features of liquid injection at supercritical
pressures is presented in this subsection. The results are obtained with
mesh J3. Figure 21 presents the distributions of temperature, liquid vis-
cosity, oxygen mass fraction, YO, and density on each phase at
t ¼ 4:5ls. The characteristics of the mixing process are seen where the
swirling motion captures regions of hotter gas and higher oxygen con-
centration into the liquid structure. Moreover, the dissolution of the
lighter oxygen into the liquid causes a decrease in the liquid viscosity to
gas-like values near the interface and a substantial drop in liquid density
with respect to liquid properties at the jet’s core. These effects are more
pronounced in the elongated liquid structures. This mixing process is
responsible for the fast deformation of the liquid under the shear forces
caused by the moving dense gas and for variations in the interface ther-
modynamic behavior along the interface. Later in Sec. VI F, Fig. 24
shows the variations of interface properties along the liquid surface in a
three-dimensional configuration.

Altogether, the fast growth of the surface instability at high pres-
sures is apparent, which can be linked to faster atomization compared
to injection at subcritical pressures. The time scales presented in this
subsection are similar to those reported in temporal studies of axisym-
metric liquid jets at high pressures,19 although time scales may also be
affected by the initial problem configuration. That is, the growth of
surface instabilities will depend on the imposed perturbation and the
initial velocity distribution across the interface.

F. Three-dimensional planar jet

A temporal and symmetric three-dimensional planar jet is pre-
sented in this section to demonstrate further the ability of the numeri-
cal model to handle three-dimensional configurations with large
surface deformations. Similar to the two-dimensional jet problem, the
jet half-thickness is 10lm and the interface is initially perturbed in the
streamwise direction with a sinusoidal wave of 30lm wavelength and
0.5lm amplitude. Another sinusoidal perturbation in the spanwise
direction is superimposed with a 20lmwavelength, and the amplitude
ranges between 0.3 and 0.5lm to enhance three-dimensional effects.

Initially, the liquid is composed of n-decane at 450K and the gas
is composed of oxygen at 550K. The thermodynamic pressure is
150 bar, and the streamwise velocity varies with the same hyperbolic
tangent profile discussed in Sec. VIE from 0m/s in the liquid to 30m/s
in the gas. Periodic boundary conditions are imposed in the stream-
wise and spanwise directions, and outflow boundary conditions are
imposed in the gas domain top boundary away from the interface.
Only one wavelength in each direction is enclosed in the computa-
tional domain and periodicity in the streamwise and spanwise direc-
tions may be used when plotting the results.

Figure 22 presents the interface deformation of the three-
dimensional planar jet up to 3 ls in time with a spanwise perturbation
amplitude of 0.5lm. Two different meshes are used (i.e., J1 and J3) to
estimate the effect of mesh size in the development of three-dimensional
liquid structures. The liquid surface evolution is practically identical
with J1 and J3. Only at 3 ls can some deviations be seen in the

FIG. 20. Temporal evolution of the total liquid volume, the total liquid mass, the total net mass exchanged across the interface, and the estimated mass error for the two-
dimensional planar liquid jet at 150 bar. (a) Total liquid volume and total liquid mass, and (b) total net mass exchanged and mass error.
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elongation of the ligament stretching from the tip of the lobes that
form on the liquid surface. The coarser mesh predicts a thinner and
longer ligament than the finer mesh due to a poorer mesh resolution
near the ligament tip. The rest of the liquid surface looks very similar,

which might justify using mesh J2 instead of mesh J3 to ease the com-
putational cost of three-dimensional simulations.

Furthermore, three-dimensional results are presented in Figs. 23
and 24. In this case, mesh J2 is used to speed up the computation and

FIG. 21. Plots of various variables for the two-dimensional planar jet with mesh J3 at 150 bar and t ¼ 4:5ls. The interface location is highlighted with a solid black curve rep-
resenting the isocontour with C¼ 0.5. The contour values are chosen to focus on a particular phase in some sub-figures. (a) Temperature; (b) liquid viscosity; (c) oxygen mass
fraction in the liquid phase; (d) oxygen mass fraction in the gas phase; (e) liquid density; and (f) gas density.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 053321 (2022); doi: 10.1063/5.0086153 34, 053321-27

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


the initial amplitude of the spanwise perturbation is set to 0.3lm. As
seen in Fig. 23, the liquid jet can deform substantially at relatively low
velocities. Liquid sheets overlap onto each other as holes occasionally
appear and some ligaments and droplets form. Interestingly, it
becomes apparent that analysis of the interface solution along the sur-
face is crucial (see Fig. 24). The interface deformation and the interac-
tion with the surrounding fluid change the LTE and jump conditions
solution. Interface regions immersed or compressed toward the hotter
gas present higher temperatures, which enhance the dissolution of
oxygen into the liquid according to LTE [see Fig. 1(a)]. This increase
in temperature affects the local mass exchange rate and there can be
regions showing net vaporization (high interface temperature), while
other regions show net condensation (low interface temperature).
Simpler works using the same binary mixture but where the interface
does not deform only showed net condensation at 100 bar and
above.17,34,35

Moreover, the surface-tension coefficient drops in the hotter
interface. This phenomenon shows the importance of the vari-
able surface-tension coefficient observed at high pressures, which
affects how the interface deforms. On the other hand, the
changes in the interface state are negligible at subcritical pres-
sures cases, which simplify the study of liquid atomization in that
pressure range.

Similarities are seen with the results of Jarrahbashi and
Sirignano,25 Jarrahbashi et al.,26 and Zandian et al.27–29 for incom-
pressible fluids (e.g., formation of lobes, holes, bridges, and liga-
ments). The qualitative differences can be explained by the
reduced surface tension at elevated pressures. However, in-depth
analysis of the characteristics of liquid jets at high pressures is left
for future works. Here, the focus is on showing the capabilities of
the numerical method presented in this work to analyze the high-
pressure liquid injection problem while predicting the relevant
two-phase, high-pressure physics (e.g., variable interface state,
enhanced mixing in the liquid phase).

VII. SUMMARY AND CONCLUSIONS

A new physical and numerical methodology has been presented
to solve low-Mach-number compressible two-phase flows with phase
change. The methodology addresses compressible liquids with phase
change and its ultimate goal is the study of liquid fuel injection in the
thermodynamic state where the pressure is supercritical for the fuel,
but the temperature is subcritical for the resulting liquid mixture at the
interface. These thermodynamic conditions are relevant in high-
pressure combustion chambers of diesel, gas turbines, and rocket
engines using typical hydrocarbon-based liquid fuels, specifically near
the fuel injectors before substantial heating occurs and the two-phase
mixture transitions to a supercritical state. Therefore, the early atomi-
zation and fuel mixing may still be dominated by two-phase
dynamics.

The advection of the liquid phase is performed by extending the
VOF method from Baraldi et al.63 to compressible liquids undergoing
phase change. Moreover, the low-Mach-number governing equations
for two-phase flows, as well as their balancing across the interface, are
coupled to a non-ideal thermodynamic model based on a volume-
corrected SRK equation of state. Further details about this thermo-
dynamic model are available in Davis et al.34 The complexity of the
non-ideal physics at high pressures adds extra computational cost. To
properly capture the interface properties and its displacement, jump
conditions and LTE have to be solved at each interface cell and extrap-
olations of phase-wise fluid compressibilities and the corresponding
velocity field have to be performed. This interface-resolved approach
provides a comprehensive description of the variation of interface
properties inherent of transcritical domains and how they affect the
liquid deformation. A constant–coefficient PPE for low-Mach-number
flows is developed based on Dodd et al.64,65 This PPE can be solved
with a computationally efficient FFT method to alleviate the increase
in computational cost.

Various tests show the viability and accuracy of the numerical
model presented in this work. A sufficiently fine mesh is needed to

FIG. 22. Interface deformation at 150 bar for the three-dimensional planar jet with two meshes J1 and J3. The initial spanwise perturbation amplitude is 0.5lm.
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provide a smooth interface solution and to minimize numerical errors
and mass errors. In the limit of incompressible liquid without phase
change, the method recovers the mass-conserving properties from
Baraldi et al.63 The highly coupled approach induces the generation of
spurious currents around the interface and caution is needed to make

sure they are not detrimental for the actual interface evolution. The
VOF method alone is known to cause spurious currents, both due to
the HF method used to evaluate curvature and due to the sharp
volume-averaging of fluid properties at the interface when solving the
one-fluid momentum equation. Additionally, the localized source

FIG. 23. Interface deformation at 150 bar for the three-dimensional planar jet with mesh J2. The initial spanwise perturbation amplitude is 0.3lm.
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terms related to mass exchange and different fluid compressibilities at
the interface contribute further to the generation of spurious currents.

Future work can consider improvements to the new methodol-
ogy. A few ideas for the topic are provided below.

• Optimize the cost of the thermodynamic model and the extrapo-
lations across the interface.

• Reduce the generation of spurious currents around the interface
while keeping a sharp interface.

• Improve the accuracy of the numerical schemes used to discretize
the governing equations.

• Consider the interface transition from a sharp to a diffuse inter-
face near and beyond the mixture critical point.

Ongoing analysis with the current code has the following
goals:

• Analyze the early deformation of three-dimensional liquid jets at
high pressures.

• Characterize the interface deformation as a function of pressure
and other parameters.

• Use the interface-resolved methodology to study the thermody-
namic state of the interface. That is, determine regions of high/
low surface-tension coefficient, identify regions of condensation/
vaporization, etc.

• Determine the role of vortex dynamics in the early deformation
of the liquid.

FIG. 24. Interface properties for the three-dimensional planar jet with mesh J2 at 150 bar and t ¼ 4ls. The initial amplitude of the spanwise perturbation is 0.3lm. The inter-
face location is colored with the value of each variable. (a) Temperature; (b) oxygen mass fraction in the liquid phase; (c) mass flux per unit area due to phase change; and (d)
surface-tension coefficient.
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APPENDIX A: DETAILS ON THE THERMODYNAMIC
MODEL

The thermodynamic model implemented in this work is based
on a volume-corrected SRK cubic equation of state,78 which is able
to represent non-ideal fluid states for both the gas and liquid
phases. The original SRK equation of state76 presents density errors
of up to 20% when compared to experimental measurements when-
ever a dense fluid is being predicted18,111 (i.e., liquid or high pres-
sure gas). Therefore, it affects the prediction of fluid properties and
transport coefficients using other models and correlations that rely
on the fluid density. An example of the improvement in the density
prediction is shown in Fig. 25, where the density of n-decane at
100 bar and various temperatures is plotted. Since the correction is
implemented as a volume translation, other thermodynamic varia-
bles, such as fugacity or enthalpy, are equivalent between both the
improved and the original SRK equation of state.

The volume-corrected SRK equation of state is expressed in
terms of the compressibility factor, Z, as

Z3 þ ð3B
 � 1ÞZ2 þ B
ð3B
 � 2Þ þ A� B� B2
	 


Z

þ B
ðB2

 � B
 þ A� B� B2Þ � AB ¼ 0; (A1)

with

Z ¼ p
qRT

; A ¼ aðTÞp
R2
uT

2
; B ¼ bp

RuT
; B
 ¼

cðTÞp
RuT

: (A2)

The parameters of this equation of state are the following. a(T)
is a temperature-dependent cohesive energy parameter, b represents
a volumetric parameter related to the space occupied by the mole-
cules, and c(T) is a temperature-dependent volume correction.

R and Ru are the specific gas constant and the universal gas con-
stant, respectively. Generalized quadratic mixing rules are used,76,78

which work well for nonpolar fluids. The binary interaction param-
eter, kij, can be obtained from models correlated with vapor–liquid
equilibrium experimental data. For instance, Soave et al.112 provide
correlations specific for the SRK equation of state and different mix-
tures (e.g., nitrogen–alkane pairs). When data are not available,
neglecting the interaction coefficients must be justified. For
instance, kij � 0 for nitrogen–alkane mixtures; thus, under the
assumption that nitrogen and oxygen are similar components, the
binary interaction coefficients could be neglected and set to zero for
oxygen–alkane mixtures if no data are available.

The solution of this cubic equation provides the density of the
fluid mixture, q, and is computationally efficient since an analytical
solution exists. Together with high-pressure correlations, the volume-
corrected SRK equation of state is used to evaluate fluid properties and
transport coefficients. The generalized multi-parameter correlation
from Chung et al.79 is used to evaluate viscosity and thermal conductiv-
ity. The mass diffusion coefficient is obtained from the unified model
for non-ideal fluids presented in Leahy-Dios and Firoozabadi80 simpli-
fied for binary mixtures and the surface-tension coefficient is estimated
as a function of the interface properties and composition from the
Macleod–Sugden correlation as suggested in Poling et al.77 The
Macleod–Sugden correlation is preferred for mixtures near the critical
point since it provides the correct limit whereby the surface-tension
coefficient drops to zero at the critical point.

Further details on the development of the necessary thermody-
namic expressions to evaluate fluid properties for the non-ideal
mixture (e.g., mixture enthalpy) based on the concept of a departure
function from the ideal state77 and the practical implementation of
this thermodynamic model can be found in Davis et al.34 and the

FIG. 25. Density of n-decane at 100 bar obtained with the original SRK equation of
state76 and with the improved SRK equation of state.78 The volume-corrected
model predicts the reference data available at NIST with higher accuracy as it tran-
sitions from the liquid state (Liq) to a supercritical state (SC) with the increase in
temperature.
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respective references mentioned in this appendix. For low-Mach-
number compressible flows, the pressure throughout the thermody-
namic model is assumed uniform and equal to the thermodynamic
or ambient pressure.

APPENDIX B: IMPLEMENTATION DETAILS

The code used for this work has been written in Fortran 90
and uses the message-passing interface (MPI) and OpenMP for
multi-processor computing. The computational domain is parti-
tioned in a pencil-like distribution with the contiguous memory
along the jet’s transverse direction (see the problem configurations
presented in Secs. VI E and VI F). The computational resources are
better utilized with this decomposition when capturing the interface
and performing the various operations that scale with the surface
area (e.g., local equilibrium state and extrapolations). The following
external open-source libraries have been linked to the code:
2DECOMP&FFT113 to perform the domain decomposition and
FFTW3114 to solve the pressure Poisson equation, Eq. (29), using
discrete Fourier transforms. The simulations were performed on the
University of California Irvine’s local HPC3 cluster.

APPENDIX C: DISCRETIZATION OF THE SPECIES
AND ENTHALPY TRANSPORT EQUATIONS

Details regarding the discretization of the species and enthalpy
transport equations in non-conservative form, Eqs. (18) and (19),
are provided in this appendix. As an example, the discretization of
rYO in the convective term ~uf � rYO is shown here following the
configuration presented in Fig. 3. The method shown here for deriv-
atives with respect to the x-variable will serve as templates for the
derivatives with respect to y and z and can also be implemented for
the respective term in the enthalpy transport equation. For simplic-
ity, the explicit notation has been dropped. This example covers the

different scenarios that can be found when evaluating @YO=@x with
an adaptive first-/second-order upwinding scheme and can be easily
extended to other directions and interface configurations.

At cell i, the gradient using gas values is found as follows.
With a uniform mesh, for ðuif þ uiþ1f Þ=2 < 0 (where the phase-wise
velocity is f¼ g), @YO=@x becomes

@YO

@x

� �i

¼

Yiþ2
O � Yi

O þ ðYi
O � Yiþ1

O Þð1þ Dx3=Dx2Þ2

Dx2 þ Dx3 �
ðDx2 þ Dx3Þ2

Dx2

if bounded second-order;

Yiþ1
O � Yi

O

Dx2

if not bounded second-order;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(C1)

and if ðuif þ uiþ1f Þ=2 � 0, it becomes

@YO

@x

� �i

¼

Yi
O � YC

O;g

Dx1
if Dx1 � 0:05Dx;

Yiþ1
O � YC

O;g

Dx1 þ Dx2
if Dx1 < 0:05Dx;

8>>>><
>>>>:

(C2)

where YC
O;g is the gas mass fraction of the oxidizer species at the

interface. The interface values used in the numerical stencils are
averaged similar to Eq. (30). If the distance between node i and the
interface is very small (i.e., Dx1 < 0:05Dx), node i is skipped and
the gradient is evaluated using the neighboring node iþ 1. This step
becomes necessary to avoid a spike in the value of @YO=@x when
the interface is very close to the grid node, which might cause unre-
alistic solutions near the interface.

Another possible stencil is given in cell iþ 1 if
ðuiþ1f þ uiþ2f Þ=2 � 0. Here, @YO=@x is evaluated as

@YO

@x

� �iþ1

¼

YC
O;g � Yiþ1

O þ ðYiþ1
O � Yi

OÞð�1� Dx1=Dx2Þ2

�ðDx1 þ Dx2Þ þ
ð�Dx1 � Dx2Þ2

Dx2

if bounded second-order and Dx1 � 0:05Dx;

Yiþ1
O � Yi

O

Dx2
if not bounded second-order solution or Dx1 < 0:05Dx;

8>>>>>>><
>>>>>>>:

(C3)

where a combination of the conditions given in Eqs. (C1) and (C2) is
used to maintain numerical stability and boundedness. Away from the
interface, the upwinded gradient @YO=@x is obtained with similar
expressions as in Eqs. (C1) and (C3) only considering the bounded-
ness condition.

Diffusive terms are discretized using second-order central dif-
ferences, although near the interface the spatial accuracy might be
reduced when including the interface. Similarly, we look at the dis-
cretization of r � ðqDmrYOÞ in the x direction under the configu-
ration presented in Fig. 3. However, its extension to other

directions or interface configurations is straightforward. The
generic discretization of the diffusive term is

@

@x
qDm

@YO

@x

� �
¼ ðqDm@YO=@xÞE � ðqDm@YO=@xÞW

Dx
; (C4)

with E and W referring to the East and West cell faces, respectively.
Fluid properties at the cell face are obtained by linear interpo-

lation between two neighboring grid nodes. If the interface is
located between the grid node and its respective cell face, the
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interface replaces the cell face (e.g., the West face of node i in
Fig. 3). Also, if the interface is located beyond a cell face but before
a neighboring node, its equilibrium solution and position are used
for the linear interpolation of fluid properties at the cell face and to
evaluate @YO=@x (e.g., the East face of node i�1 in Fig. 3).

For example, the discretization of the diffusive term at cell i
results in

@

@x
qDm

@YO

@x

� �i

¼ ðqDm@YO=@xÞE � ðqDm@YO=@xÞW

Dx1 þ Dx2=2
; (C5)

with

qDm
@YO

@x

� �E

¼ ðqDmÞE
Yiþ1
O � Yi

O

Dx2

� �
; (C6a)

qDm
@YO

@x

� �W

¼
ðqDmÞCg

Yi
O � YC

O;g

Dx1

 !
if Dx1 � 0:05Dx;

ðqDmÞCg
Yiþ1
O � YC

O;g

Dx1 þ Dx2

 !
if Dx1 < 0:05Dx;

8>>>>>><
>>>>>>:

(C6b)

where ðqDmÞE is the product of the linear interpolations of q and
Dm at the East face and ðqDmÞCg is the product of the interface gas
values of q and Dm at equilibrium. Similar to the discretization of
the convective term, the approximation of @YO=@x skips node i if
the interface is very close to it in order to avoid nonphysical spikes.

Some other special considerations are needed to ensure a
stable and physically correct solution. Two extreme cases may exist,
either when the interface is nearly touching the grid node (i.e.,
Dx1 < 0:01Dx in Fig. 3) or when the node changes phase (i.e., Cn

< 0:5 and Cnþ1 � 0:5 or Cn � 0:5 and Cnþ1 < 0:5). In both sce-
narios, the interface value of the correct phase is assigned to a grid
node based on its proximity. If the interface displacement in Dt is
very small, this approximation is reasonable. Moreover, under-
resolved regions (i.e., droplets or thin areas of the order of the mesh
size) might generate incorrect solutions. To avoid this problem, if a
nonphysical solution is detected because of this reason, the values
for oxygen mass fraction or enthalpy assigned to the problematic
cell are obtained from an average of the surrounding physically cor-
rect values of the same fluid phase.

APPENDIX D: DETAILS ON THE TECHNIQUES USED
TO EXTRAPOLATE THE FLUID COMPRESSIBILITIES
AND PHASE-WISE VELOCITIES

The equations presented in Aslam96 used to extrapolate the
fluid compressibility across the interface as detailed in Sec. VC are
summarized in this appendix. Generally, a linear extrapolation of
the divergence of each phase is preferred. However, a constant
extrapolation might be necessary for numerical stability depending
on the problem configuration.85 Using the extrapolation of the
liquid-phase divergence as an example, Eqs. (D1) and (D2) have to
be solved. The gas-phase divergence extrapolation follows the same
approach

@gn
@s
þ HðCÞð~n � rgnÞ ¼ 0; (D1)

@g
@s
þHðCÞð~n � rg � gnÞ ¼ 0: (D2)

In Eqs. (D1) and (D2), g ¼ r �~ul and gn ¼~n � rg. Here, ~n is
defined pointing toward the gas phase. These equations are solved
to steady state in a fictitious time, s, which does not necessarily
have units of time. First, the normal gradient of g (or gn) is extrapo-
lated in a constant fashion using Eq. (D1) and, then, g is extrapo-
lated linearly following gn using Eq. (D2). The liquid-phase
extrapolation is only performed in the region defined by H(C),
where H(C)¼ 0 if C¼ 1 and H(C)¼ 1 otherwise. That is, the
extrapolation is done only at interface cells (i.e., 0 < C < 1) and gas
cells (i.e., C¼ 0). When extrapolating gas-phase values, H(C)¼ 0 if
C¼ 0 and H(C)¼ 1 otherwise. For practical purposes, it is sufficient
to reach steady state only within the extrapolation region defined in
Fig. 5. If a constant extrapolation is required for numerical stability,
it is only necessary to solve Eq. (D2) by setting gn ¼ 0. That is, a lin-
ear extrapolation might overestimate or underestimate the fluid
compressibility within the extrapolation region, especially during
initialization with sharp initial conditions. This problem might
result in the development of an unstable or unrealistic solution.
More information on the numerical discretization and solution of
these two equations can be found in Aslam.96

Within the VOF framework, the normal unit vector is defined
only at interface cells. Therefore, we need to populate the extrapola-
tion region with an estimate of ~n in order to solve Eqs. (D1) and
(D2). For that purpose, an inverse-distance weighted average is
used to obtain each component nm (i.e., m ¼ x; y; z) of ~n at non-

interface cells following nm ¼
P

i
nm;i
di

� . P
i
1
di

� 
. To evaluate this

average, only the information of the closest set of i interface cells in
the neighborhood of the node of interest is used. di is defined as the
distance between the node and the centroid of the interface plane in
cell i. Once each component nm is obtained, the vector is re-
normalized to have j~nj ¼ 1.

Another method to extrapolate the fluid compressibility is pre-
sented by McCaslin et al.115 The same extrapolation equations pre-
sented in Aslam96 are solved directly at steady state using a fast
marching method (FMM). The method is computationally more
efficient since it does not require iterations on a pseudo-time.
However, spatial convergence is less accurate for higher-order
extrapolations (e.g., linear or quadratic). For a constant extrapola-
tion, the FMM approach and the iterative method by Aslam96 have
the same spatial accuracy; thereby, the FMM approach has an
advantage and has been used to speed the three-dimensional com-
putations shown in Secs. VID and VI F.

Once the fluid compressibilities have been estimated across the
interface for each phase, the extrapolation method presented in Dodd
et al.65 adapted to compressible flows is used to obtain the phase-wise
velocities. Equation (D3) solves the extrapolation of ~ul and is directly
solved at steady-state conditions (i.e., as s!1; @~ul

@s ! 0) using an
iterative solver until some desired tolerance is achieved. s is a fictitious
time-like variable that does not have units of time

@~ul

@s
þrðr �~ulÞ ¼ rg ! rðr �~ulÞ ¼ rg: (D3)
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The two boundary conditions imposed in Eq. (D3) are as fol-
lows: (a) the velocity components at the boundary of the extrapola-
tion region inside the real phase are fixed and are equal to the one-
fluid velocity. That is, ~ul ¼~u in the example shown in Fig. 5; and
(b) the velocity components at the boundary of the extrapolation
region in the ghost phase must satisfy the discrete divergence of the
boundary cell (i.e., the extrapolated r �~ul). The velocity compo-
nents inside the extrapolation region are solved by discretizing Eq.
(D3) using second-order finite differences. This methodology
ensures that the extrapolated staggered phase-wise velocity field sat-
isfies the extrapolated phase-wise divergence field. Although Eq.
(D3) only shows the extrapolation of liquid phase-wise velocities,
the phase-wise velocities related to the gas phase are obtained using
the same approach.

A note on the treatment of under-resolved regions must be
provided here. As pointed out in Secs. IV B and VD, a minimum
mesh resolution is needed to capture the interface geometry and
surface-tension force accurately. The extrapolation of phase-wise
fluid compressibilities and velocities becomes problematic in under-
resolved areas, where poor convergence (or none at all) of the
extrapolation equations may arise. A possible solution, but out of
the scope of this work, would be to refine the mesh locally (i.e., use
adaptive mesh refinement or AMR). Here, a different approach is
proposed. A group of nodes or “block” is defined around under-
resolved interface locations. The nodes inside these under-resolved
domains are excluded from both the phase-wise fluid compressibil-
ity and velocity extrapolations. In these areas, it is assumed that the
extrapolation region is incompressible and the phase-wise velocities
correspond to the one-fluid velocity. To maintain consistency with
the pressure solver, the divergence of the one-fluid velocity is zero
in under-resolved interface cells despite the volume expansion or
contraction that occurs under mass exchange across the interface.
Regardless, phase change is still considered in the VOF method
[i.e., Eq. (17a) is still used].

Under-resolved areas are identified in high-curvature regions
where the local radius of curvature is below a certain resolution
threshold. This threshold is defined as 1=j < 3Dx in two dimen-
sions, whereas in three dimensions three curvatures and thresholds
are considered: the three-dimensional curvature of the surface with
1=j < 6Dx and the curvatures in the two principal directions used
to determine the three-dimensional curvature with 1=j1 < 3Dx and
1=j2 < 3Dx. That is, the three-dimensional curvature may be twice
the curvature of a two-dimensional surface with the same radii of
curvature (e.g., a circle and a sphere with the same diameter) and it
may also be zero if the two radii of curvature cancel each other
locally. Similarly, under-resolved areas are also defined around thin
liquid structures or gas pockets where two conflicting extrapolations
coming from two different interfaces exist.

The main goal here is to define a numerical approach that will
keep the simulation advancing in time. The errors introduced with this
treatment are expected to be minimal in regions where geometry errors
already exist and might be dominant. The treatment of these under-
resolved areas might also affect mass conservation since fluid compres-
sibilities are neglected in the advection of the interface. For instance, the
error introduced in the pressure solver when not accounting for the
velocity jump due to mass exchange is related to the strength of _m 0. For
the type of flows analyzed here, the velocity jump ð~ug �~ulÞ �~n may be

of the order of Oð10�1 � 10�2 m/s) and the velocity field is of the
order ofOð101 � 102 m/s).

APPENDIX E: VERIFICATION OF TWO-PHASE
INCOMPRESSIBLE FLOWS

1. Standing capillary wave
The analytical solution for the relaxation of small-amplitude,

incompressible, two-dimensional capillary waves presented by
Prosperetti106 is used to validate the dynamical behavior of the liq-
uid surface in the presence of surface tension. The analytical model
addresses superposed fluids with infinite depth and lateral exten-
sion, which is then solved numerically by reducing the problem to
two dimensions and employing a sufficiently wide domain in the
surface transverse direction with open boundary conditions. In
addition, periodic boundary conditions in the wave direction are
applied. Here, only the continuity and momentum equations for
two-phase flows are considered.

Figure 26 depicts the amplitude decay of an initial sinusoidal
perturbation. We consider a sinusoidal wave with a wavelength of
1m and an initial amplitude of 0.01m. Each fluid has a 1.5m depth.
The liquid density is 1000 kg/m3, and the gas density is 100 kg/m3,
with a liquid viscosity of 17.989 Pa s and a gas viscosity of 1.7989 Pa
s. The surface-tension coefficient is 0.01N/m, and gravity is taken
into account by placing the lighter fluid on top of the denser fluid.

2. Liquid jet atomization

The two-phase, incompressible limit is verified by comparing
the current code’s performance to previous codes used to analyze
the atomization of incompressible planar liquid jets. The early
deformation of a planar liquid jet defined in Table I of Zandian
et al.28 as case D3a is analyzed for this purpose. Following the

FIG. 26. Incompressible standing capillary wave. Showing wave amplitude vs time.
A uniform mesh is considered where Dx ¼ Dy ¼ 0:01 m.
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definition of the liquid Reynolds number, ReL ¼ qLuGh=lL, and gas
Weber number, WeG ¼ qGu

2
Gh=r, this case presents ReL ¼ 5000

and WeG ¼ 7250. The jet thickness is h ¼ 50lm and the free-
stream gas velocity is uG ¼ 100m/s, while the liquid density is set at
qL ¼ 804 kg/m3 and the gas density is qG ¼ 402 kg/m3. The initial
perturbation wavelength is 100 lm. More details about the problem
configuration are provided in Zandian et al.28 Again, only the solu-
tion of the continuity and momentum equations is addressed here.

The computational setup between both codes is different. The
numerical model introduced in this paper is based on a VOF
approach, while the numerical method used in Zandian et al.28 is
based on the LS method with an artificially diffuse interface.
Therefore, both codes are substantially different in how they cap-
ture the interface and address its sharpness. Moreover, the uniform
mesh size used in Zandian et al.28 is Dx ¼ 1:25 lm with the planar
jet centered in the domain, while the results obtained with the pre-
sent model use Dx ¼ 0:667lm with a reduced computational

domain that includes fewer wavelengths of the initial perturbation
and that considers symmetry boundary conditions at the center
plane of the jet. The time step value is consistent with the respective
numerical method.

Figures 27 and 28 show a comparison of the two approaches at
different times. Both methods predict nearly identical surface defor-
mation at 30 ls, which validates the implemented interface captur-
ing approach and momentum solver against a previously validated
code that has been used in numerous works.25–29,116 There are
minor differences that become apparent later in time (i.e., 50 ls).
That is, the current code keeps a sharper interface and employs a
finer mesh than the results obtained by Zandian et al.28 As a result,
it can resolve smaller structures and high-curvature regions more
effectively. Note that once the surface has deformed significantly,
the symmetry boundary condition may affect the comparison
between the two simulations. Additionally, the VOF results display
what appears to be surface wrinkles with a very short wavelength.

FIG. 27. Incompressible planar liquid jet injection (a). Surface deformation comparison at t ¼ 30ls between a numerical approach based on the level set (LS) method28 and
the present numerical approach based on the volume-of-fluid (VOF) method. The LS method identifies the liquid surface as the iso-surface with h ¼ 0, and the VOF method
identifies the liquid surface as the iso-surface with C¼ 0.5. (a) 3D view (LS); (b) 3D view (VOF); (c) top view (LS); and (d) top view (VOF).
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These wrinkles originate from the plotting software when represent-
ing the iso-surface with C¼ 0.5 of a non-smooth dataset and do not
exist in the actual computation where the proper interface recon-
struction algorithms are used (i.e., PLIC).
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