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A new rotational amelet model with inward swirling ow through a stretched vor-
tex tube is developed for sub-grid modelling to be coupled with the resolved ow
for turbulent combustion. The model has critical new features compared to existing
models. (i) Non-premixed ames, premixed ames, or multi-branched ame structures
are determined rather than prescribed. (ii) The effects of vorticity and the related cen-
trifugal acceleration are determined. (iii) The strain rates and vorticity applied at the
sub-grid level can be directly determined from the resolved-scale strain rates and vortic-
ity without a contrived progress variable. (iv) The amelet model is three-dimensional.
(v) The effect of variable density is addressed. (vi) The inward swirl is created by
vorticity combined with two compressive normal strain components; this feature distin-
guishes the model from counterow amelet models. Solutions to the multicomponent
Navier–Stokes equations governing the amelet model are obtained. By coordinate
transformation, a similar solution is found for the model, through a system of ordinary
differential equations. Vorticity creates a centrifugal force on the sub-grid counter-
ow that modies the molecular transport rates, burning rates, and ammability limits.
Sample computations of the inward swirling rotational amelet model without cou-
pling to the resolved ow are presented to demonstrate the importance of the new
features. Premixed, nonpremixed, and multi-branched ame structures are examined.
Parameter surveys are made with rate of normal strain, vorticity, Damköhler number,
and Prandtl number. The centrifugal effect has interesting consequences when com-
bined with the variable-density eld. Flow direction can reverse; burning rates can be
modied; ammability limits can be extended.

Keywords: amelet; turbulent combustion; stretched vortex tube; similar solution;
multi-branched ames

1. Introduction

The practical and major method for energy conversion for mechanical power and heating
involves combustion in high mass-ux chambers. The high mass-ow rate leads to tur-
bulent ow, whereby many length and time scales appear in the physics making serious
challenges for both computational and experimental analyses. For computations where the
smallest scales typically cannot be resolved, the method of large-eddy simulations (LES)
is employed wherein the smaller scales are ltered via integration over a window size
commensurate with the computational mesh size. This method allows affordable computa-
tions. However, the essential, rate-controlling, physical and chemical processes, occurring
on shorter scales than the lter size, must be modelled. In the computations, those sub-grid
models must be properly coupled to the resolved LES ow eld.
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Currently, amelet models are often used for LES or Reynolds-averaged Navier–Stokes
(RANS) methods with some advantages. The amelet equations are usually a system of
ordinary differential equations (ODEs) to be solved ofine with solutions available in tab-
ular form or through neural networks (NN). The most popular amelet models can handle
multi-species, multi-step oxidation kinetics without requiring small time steps during the
solution of the resolved-scale uid dynamics. Thus, savings of computational resources
can be major compared to direct numerical simulation. Here, we will retain these very
attractive features while removing some less desirable features. Already, some progress
has been made in extending the fundamental amelet theory beyond its long-term limita-
tion of a single-ame structure, two-dimensional (or axisymmetric) conguration, and use
of the uniform-density assumption. Still, those advances must be applied to LES or RANS.
In addition, the amelet theory must consider shear strain and vorticity at the small scale
of the amelet; these are the vital forgotten physics in current amelet modelling. Further-
more, the strain rates in the amelet model are far from properly connected to the strain
rates at the resolved scale.

The goals in this paper are to improve the amelet model by including several important
physical effects that are commonly neglected in present models and to identify other issues,
related to the coupling between the sub-grid-scale physics and the resolved-scale (or time-
averaged) physics, that require further study.

1.1. Existing amelet theory

The laminar mixing and combustion that occur within the small turbulent eddies deter-
mines the performance for many power and propulsion applications. These laminar
amelet sub-domains experience signicant shear, tensile, and compressive strains. Some
important works exist here but typically for either counterows with only normal
strain or simple vortex structures in planar or axisymmetric geometry and often with
a constant-density approximation. See Linan [1], Williams [2], Marble [3], Karagozian
and Marble [4]), Cetegen and Sirignano [5,6], Peters [7], and Pierce and Moin [8]. Only
Karagozian and Marble, in one of their two problems, address a stretched vortex with
an inward swirling ow which is the topic of this current paper. An interesting review
of the early amelet theory is given by Williams [9]. Williams [2] rst established the
concept of laminar amelets in the turbulent diffusion ame structure. Flamelet stud-
ies have focussed on either premixed or nonpremixed ames; a unifying approach to
premixed, nonpremixed, and multi-branched ames has not been developed until the
recent counterow-based rotational amelet study by Sirignano [10]. Here, we attempt
a unication for the vortex-tube-based amelet.

Most amelet studies do not directly consider vorticity interaction with the amelet;
examples are [1,7–9]. Williams [2] rst recognised the advantage of separating rotation
(due to vorticity) and stretching by transformation to a rotating, non-Newtonian reference
frame. However, the momentum consequences in the new reference frame were not exam-
ined. Some other works that have examined vortex-ame interaction have not included the
effects of stretching and rotation [3,5,6,11]. In one of two problems treated in their paper,
Karagozian and Marble [4] examined a three-dimensional ow with radial inward velocity,
axial jetting, and a vortex centred on the axis. The ame sheet wrapped around the axis due
to the vorticity; an incompressible-ow velocity eld was used with an ad hoc adjustment
for the variable density effect. However, that adjustment could not account for the density
gradients and associated centrifugal effects to be discussed here.
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Our interest on high-mass-ux turbulent combustors leads to a focus on situations with a
wide range of length and time scales where shearing, reactant mixing, and exothermic reac-
tion occur together. Thus, mention here of many interesting areas of turbulent-combustion
literature is avoided, e.g. corrugated (i.e. wrinkled) premixed, laminar ames.

The two-dimensional planar or axisymmetric counterow conguration is commonly
the foundation for a amelet model. Coordinate-system change based on the principal
strain-rate directions can provide the counterow conguration in a general ow. Fur-
thermore, the quasi-steady counterow can be analysed by ordinary differential equations
because the dependence on the transverse coordinate is either constant or linear, depend-
ing on the variable. Pierce and Moin [8] modied the nonpremixed-amelet counterow
conguration by xing domain size and forcing ux to zero at the boundaries. Flamelet
theory as a closure model for turbulent combustion typically tracks two resolved-scale
variables: a normalised conserved scalar and the strain rate. Generally, the strain rate is
given indirectly through a progress variable. The progress variable is not a fundamental
parameter and must be dened in some arbitrary fashion. Mixture fraction is tradition-
ally used for the conserved scalar. The amelet model for LES developed by Pierce and
Moin [8] was a substantial advancement through the introduction of the amelet progress
variable (FPV). Their approach has also been used widely, e.g. [12–15]. Some [12,16,17]
introduced the use of neural networks in place of the look-up table. Mueller [18] presented
the amelet model in a somewhat different mathematical framework but without the addi-
tion of a new physical description. Nevertheless, there are concerns about incompleteness
and contradiction in the above models. (i) The models are designed specically for non-
premixed ames or premixed ames. The ame structure should be determined rather than
prescribed. Multi-branched ames should be allowed. (ii) The effects of vorticity are com-
monly neglected with a very few exceptions identied above. Yet, the models are applied to
turbulent ows where the strain rates and vorticity magnitudes are known to be larger at the
small scales than at the large scales. (iii) The above amelet models are two-dimensional
or axisymmetric although key three-dimensional behaviour can be shown to exist. (iv)
The effect of variable density is not thoroughly addressed. (v) Clear connections are not
given between the strain rates and vorticity at the amelet level and those variables at the
resolved scale of the combustor. Sirignano [10] has addressed the incompleteness and con-
tradiction for counterow amelets with the presentation of a rotational amelet closure
model. Here, we attempt to follow with consideration of amelets in vortex tubes.

1.2. Stretched vortex with inward swirl

In one part of their paper, Karagozian and Marble [4] treated a ame within a stretched
vortex tube with an inward swirling ow. Their incompressible velocity eld was dened
by Burgers [19] and Rott [20] and is commonly known as Burgers vortex. In particular,
with ur, uz, and uθ as the velocity components in cylindrical coordinates and parameter a
and kinematic viscosity ν taken as constants, we have

ur = ar; uz = 2az

uθ = 

4πr

[
1 − exp

(
−ar2

2ν

)]
(1)

where  is the circulation taken through the far eld surrounding the vortex tube. Note that
uθ → /(2πr) as r → ∞, yielding potential ow for the far eld. This description gives



4 W. A. Sirignano

an exact steady-state solution to the incompressible Navier–stokes equations. Although
the tube is being stretched in the z direction, diffusion of momentum and vorticity in the r
direction allows a balance with radial advection that results in a steady solution.

Karagozian and Marble [4] made an ad hoc adjustment to correct for expansion by
variable density; however, by not accounting for spatial variation of density, the effect
of centrifugal acceleration was not considered. They also focussed on diffusion ames.
Here, a stretched vortex will be considered but with full account of variable density and
allowance for a premixed ame, multibranched ame, or diffusion ame as determined by
the boundary conditions. We will not use the incompressible Burgers vortex velocity eld;
however, it does provide useful guidance. In particular, note that for small r values, the
Burgers vortex gives wheel motion for the uid, i.e. uθ ≈ (ar)/(4πν).

1.3. Relative orientations of principal strain axes, vorticity, and scalar gradients

Both normal strain rate and shear strain rate are imposed on the amelet and are impor-
tant. Shear strain can, in general, be decomposed into a normal strain and a rotation
(whose rate is half of the vorticity magnitude). The magnitudes of strain rate and vor-
ticity increase as the eddy size decreases in the turbulence energy cascade. The strain
and rotation become especially important on the smallest turbulence scales where mixing
and chemical reaction occur. The dissipation rate of turbulence kinetic energy determines
the smallest (i.e. Kolmogorov) scale size. The nal molecular mixing and chemical reac-
tion occur on this smaller scale, where there will be an axis (or direction) of principal
compressive normal strain and an orthogonal axis for principal tensile strain, the third
orthogonal axis could be either tensile or compressive. These axes rotate due to vorticity.
Thereby, the direction of the scalar gradient rotates. A useful amelet model must have a
statistically accurate representation of the relative orientations on this smallest scale of
the vorticity vector, scalar gradients, and the directions of the three principal axes for
strain rate. Several studies are helpful in understanding this important alignment issue
[21–25].

Generally (and always for incompressible ow), at least one principal strain rate γ

locally will be compressive (corresponding to inow in a counterow conguration),
another principal strain rate α will be tensile (also named extensional and correspond-
ing to outow), and the third can be either extensional or compressive and will have an
intermediate strain rate β of lower magnitude than the other like strain rate. Specically,
α > β > γ , α > 0, γ < 0, and, for incompressible ow, α + β + γ = 0. If the intermedi-
ate strain rate β < 0, there is inow from two directions with outow in one direction; a
contracting jet ow occurs locally. Conversely, with β > 0, there is outow in two direc-
tions and inow in one direction; a counterow or, in other words, the head-on collision of
two opposed jets occurs.

Direct numerical simulations (DNS) for incompressible ows have provided some use-
ful guidance. Both Ashurst et al. [21] and Nomura and Elghobashi [22] compared a case of
homogeneous sheared turbulence with a case of isotropic turbulence. The vorticity align-
ment with the intermediate strain direction is most probable in both cases but especially in
the case with shear. Furthermore, the intermediate strain rate is most likely to be extensive
(positive) implying a counterow conguration.

Nomura and Elghobashi [23] show for reacting ow that, in regions of exothermic reac-
tion and variable density, alignment of the vorticity with the most tensile strain direction
can occur. Still, as the strain rates increase, the intermediate direction again becomes more
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favoured for alignment with vorticity; that direction is also preferred in regions where
mixing occurs without substantial divergence of the velocity due to chemical reaction.

A material interface most probably aligns to be normal to the direction of the compres-
sive normal strain. That is, the scalar gradient and the direction of compressive strain are
aligned [21–25]. There is agreement that the most common intermittent vortex structures
in regions of high strain rate are sheets or ribbons rather than tubes. Nevertheless, the
agreement is that vortex tubes can exist in a combustor and can be relevant.

Based on those understandings concerning vector orientations, amelet theory was
extended [26] in a second signicant aspect beyond the inclusion of both premixed and
non-premixed ame structures; namely, a model was created of a three-dimensional eld
with both shear and normal strains. The three-dimensional problem is reduced to a two-
dimensional form and then, for the counterow or mixing-layer ow, to a one-dimensional
similar form. The system of ordinary differential equations (ODEs) is presented for the
thermo-chemical variables and the velocity components. Conserved scalars are determined
and can become the independent variable if they behave in a monotonic fashion. These
new ndings are very helpful in improving the foundations for amelet theory and its use
in sub-grid modelling for turbulent combustion.

With attention to the needed improvements, a new rotational amelet model was recently
developed based on a counterow with rotation [10]. The model (i) determines rather
than prescribes the existence of non-premixed ames, premixed ames, or multi-branched
ame structures; (ii) determines directly the effect of shear strain and vorticity on the
ames; (iii) applies directly the resolved-scale strain rates and vorticity to the sub-grid
level without the use of a contrived progress variable; (iv) employs a three-dimensional
amelet model; (v) considers the effect of variable density. The goal with the new inward-
swirl amelet model presented here is to extend these ve above-mentioned attributes of
the rotational amelet concept to a new vortex-tube conguration with inward spiralling
ow rather than the traditional counterow. Elements of the counterow character will
remain because uid of differing compositions will be strained to move towards each other
enhancing transport and reaction. The earlier analysis [10] as well as this new analysis use
one-step kinetics to avoid complications in these initial studies; however, a clear template
will exist for the future employment of multi-step kinetics.

Section 2 presents the analysis supporting a new sub-grid ame model that better
addresses effects of rotation, variable density, three-dimensional character, and multi-
branched ame structure for the stretched vortex tube Computational results are discussed
in Section 2. Results and the related discussion are presented in Section 3. Concluding
comments are made in Section 4.

2. Flamelet analysis

The problem is stated here in a quasi-steady, three-dimensional form where variable den-
sity is allowed. These assumed orientations are consistent with the statistical ndings
of [23]. The direction of major compressive principal strain aligns with the scalar gra-
dient and is orthogonal to the vorticity vector direction; an extensional principal strain
direction is aligned with the vorticity. The stretched vortex character is created by impos-
ing compressive normal strain in both coordinate directions that are orthogonal to the
vorticity vector. Thus, we have a stretched vortex tube that qualitatively relates to the
incompressible-ow, uniform-density congurations of [19,20], and [4].
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Figure 1. Transformation to ξ , χ , z rotating coordinate system from x, y, z Newtonian system.
θ increases in the counterclockwise direction.

The analysis here will have many identical features to those presented in [10]. The
essential differences between the current analysis and the prior analysis for the rotational
amelet is that here we have compressive normal strain (i.e. inow) imposed in two direc-
tions with extensional normal strain (i.e. outow) in one direction while, there earlier,
compressive normal strain (i.e. inow) occurred in only one direction with outow in two
directions. The inward spiral of the ow can only occur with two compressive normal
strain directions. Consequently, the governing equations will look identical; however, the
difference in the signs of imposed normal strain rates has major physical consequence.

Major differences of this new analysis with the analyses of [4,19,20] are present. Those
analyses were axisymmetric with uniform density. Here, both three-dimensionality and
density gradients are essential to capture the centrifugal effect that will be seen to modify
burning rates. Three-dimensional behaviour will occur when a direction for scalar gradients
is identied. It also may be enhanced if the two inward owing streams have strain rates
of differing magnitudes.

2.1. Coordinate transformation

In Figure 1, the Newtonian frame is transformed to a rotating, non-Newtonian frame where
the curl of the velocity is zero. The vorticity aligns with the z direction. ωκ is the vorticity
magnitude on this sub-grid (Kolmogorov) scale. x, y, z are transformed to ξ , χ , z wherein
the material rotation is removed from the ξ , χ plane by having it rotate at angular velocity
dθ/dt = ωκ/2 relative to x, y. Here, θ is the angle between the x and ξ axes and simulta-
neously the angle between the y and χ axes. The sub-grid domain is sufciently small to
consider a uniform value of ω across it, consistent with the truncated Taylor series expan-
sion used elsewhere in the amelet analysis. The scalar gradients align with the major
principal axis for compressive strain. In many of our calculations, the two compressive
normal strains will have equal magnitude; so, the choice of the normal strain direction
which aligns with the scalar gradient is arbitrary. The scalar gradient is always aligned
with the χ direction in the analysis here.

Thereby,

ξ = x cos θ + y sin θ ; χ = y cos θ − x sin θ

∂ξ

∂x
= cos θ ;

∂ξ

∂y
= sin θ ;

∂χ

∂x
= − sin θ ;

∂χ

∂y
= cos θ
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uξ = u cos θ + v sin θ + χ
ωκ

2
; uχ = v cos θ − u sin θ − ξ

ωκ

2
∂u

∂x
= ∂u

∂ξ
cos θ − ∂u

∂χ
sin θ ;

∂u

∂y
= ∂u

∂ξ
sin θ + ∂u

∂χ
cos θ

∂v

∂x
= ∂v

∂ξ
cos θ − ∂v

∂χ
sin θ ;

∂v

∂y
= ∂v

∂ξ
sin θ + ∂v

∂χ
cos θ (2)

Since
∂v

∂x
− ∂u

∂y
= ωκ (3)

it follows that
∂uχ

∂ξ
− ∂uξ

∂χ
= 0 (4)

Thus, the rotating frame of reference does not have vorticity appearing explicitly. However,
the frame is not Newtonian and a reversed (centrifugal) force is imposed. The expansions
due to energy release produce new vorticity but it will integrate to zero globally; the ow
will be antisymmetric and have zero circulation in the new reference frame.

In the new reference frame, the normal rates of strain, imposed in the far eld, in the ξ , χ ,
and z directions are S1, −(S1 + S2), and S2, respectively. Sirignano [10], for the rotational
amelet with counterow, considered both S1 and S2 to be positive. Here, with the inward
swirl amelet, S1 < 0, S2 > 0, and S1 + S2 > 0. In the next sub-section, these strain rates
will be non-dimensionalized.

2.2. Governing equations

Quasi-steady behaviour is considered. The governing equations for steady 3D ow in
the non-Newtonian frame can be written with ui = uξ , uχ , w ; xi = ξ , χ , z. The centrifu-
gal acceleration ai = ξω2

κ/4, χω2
κ/4, 0. The quantities p, ρ, h, hm, Ym, ω̇, μ, λ, D, and cp are

pressure, density, specic enthalpy, heat of formation of species m, mass fraction of species
m, chemical reaction rate of species m, dynamic viscosity, thermal conductivity, mass dif-
fusivity, and specic heat, respectively. Furthermore, the Newtonian viscous stress tensor
with the Stokes hypothesis is considered. The boundary-layer approximation is not needed
and the Navier–Stokes equations for a multicomponent eld will be solved. The system is
described as

∂(ρuj)

∂xj
= 0 (5)

ρuj
∂ui

∂xj
+ ∂p

∂xi
= ∂

∂xj

(
μ

[
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂uk

∂xk

])
+ ρai (6)

ρuj
∂h

∂xj
= ∂

∂xj

(
λ

cp

∂h

∂xj

)
+ ∂

∂xj

(
ρD(1 − Le)N

m=1hm
∂Ym

∂xj

)

− ρN
m=1hf ,mω̇m (7)

ρuj
∂Ym

∂xj
= ∂

∂xj

(
ρD

∂Ym

∂xj

)
+ ρω̇m; m = 1, 2, . . . ., N (8)
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The viscous dissipation, the energy source term ρujaj = ρ(ωκ/2)2(ξuξ + χuχ ) in the new
reference frame, and other terms of the order of the kinetic energy per mass have been
neglected.

Here, we dene the non-dimensional Prandtl, Schmidt, and Lewis numbers: Pr ≡
cpμ/λ; Sc ≡ μ/(ρD); and Le ≡ Sc/Pr. These numbers will be assumed to be constants.
Furthermore, Pr = Sc (i.e. Le = 1).

The non-dimensional forms of the above equations remain identical to the above
forms if we choose certain reference values for normalisation. In the remainder
of this article, the non-dimensional forms of the above equations will be consid-
ered. The superscript ∗ is used here to designate a dimensional property. The vari-
ables u∗

i , t∗, x∗
i , ρ∗, h∗, p∗, and ω̇∗

m, and properties μ∗, λ∗/c∗
p, and D∗ are normalised

respectively by [(S∗
1 + S∗

2)μ
∗
∞/ρ∗

∞]1/2, (S∗
1 + S∗

2)
−1, [μ∗

∞/(ρ∗
∞(S∗

1 + S∗
2))]

1/2, ρ∗
∞, (S∗

1 +
S∗

2)μ
∗
∞/ρ∗

∞, (S∗
1 + S∗

2)μ
∗
∞, (S∗

1 + S∗
2), μ

∗
∞, μ∗

∞, and μ∗
∞/ρ∗

∞. The dimensional strain rates
S∗

1 and S∗
2 and vorticity ω∗

κ are normalised by S∗
1 + S∗

2 . The reference values for strain rates
and far-stream variables and properties used for normalisation will be constants. The refer-
ence length [μ∗

∞/(ρ∗
∞(S∗

1 + S∗
2))]

1/2 is the estimate for the magnitude of the viscous-layer
thickness. In the following amelet analysis, the vorticity ωκ and the velocity derivatives
∂ui/∂xj are non-dimensional quantities; their dimensional values can be obtained through
multiplication by S∗

1 + S∗
2 . Now, S1 + S2 = 1.

In the rotating reference frame, two different gaseous mixtures exist in the far eld,
one for large positive values of χ and another for large negative values of χ . They both
advect and diffuse towards each other. For the study of a diffusion (nonpremixed) ame,
one mixture is fuel and the other is an oxidiser. With a premixed ame, one far eld has a
combustible mixture of fuel and oxidiser while the other has a hot inert gas (e.g. combus-
tion products). In another case where multiple ame branches may occur, both streams can
be combustible; one can be fuel rich while the other is fuel lean.

2.3. Similar form for the equations

The stagnation point is taken as the origin ξ = χ = z = 0. Along the line ξ = z = 0 nor-
mal to the interface, we can expect the rst derivatives of uχ , ρ, h, T , and Ym with respect to
either ξ or z to be zero-valued. The velocity components uξ and w will be odd functions of
ξ and z, respectively, going through zero and changing sign at that line. v also changes sign,
going through zero at the origin; however, generally the reaction zone will be offset and an
odd function does not result for v. Upon neglect of terms of O(ξ 2) and O(z2), the variables
uχ , ρ, h, T , and Ym can be considered to be functions only of t and χ . The density-weighted
Illingworth transformation [27] of χ replaces χ with η ≡

 y
0 ρ(χ ) dχ . Neglect of terms of

the same order of magnitude implies that uξ = S1ξ(df1/dη) and w = S2z(df2/dη). Note uξ

is independent of z and w is independent of ξ ). At the edge of the viscous layer at large pos-
itive η, df1/dη → 1, df2/dη → 1, f1 → η, and f2 → η. Ordinary differential equations are
created here through the variable η and the convenient notation is used so that () ≡ d()/dη.

In the non-dimensional form given by Equations (5) through (8), the dimensional strain
rates S∗

1 and S∗
2 are each normalised by the dimensional sum S∗ = S∗

1 + S∗
2 . If the far eld

has uniform density, S∗ is the magnitude of the major compressive normal strain. Thus, the
non-dimensional relation is S2 = 1 − S1 and only one independent non-dimensional strain-
rate parameter is needed. Two strain rates are presented above and in the following analysis
with the understanding that one depends on the other such that S1 + S2 = 1. S1 + S2 will be
explicitly stated in our analysis without substitution of the unity value in order to emphasise
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the summation which is consequential in the dimensional formulation. This choice claries
whether a particular term when converted to a dimensional form depends on S∗

1 , S∗
2 , or the

sum of the two strain rates.
The analysis follows closely the method of [10]. Here, that method is presented in a

summary fashion since details are readily available. For the steady state, the continuity
Equation (5) is integrated to give

ρuχ = −S1f1(η) − S2f2(η) (9)

and then

u
χ = S1f1(η) + S2f2(η)

ρ2
ρ  − S1f 

1(η) + S2f 
2(η)

ρ
(10)

Thus, the incoming inviscid ow outside the boundary layer is described by uχ = −(S1 +
S2)η for positive η and uχ = −(S1 + S2)η/ρ−∞ for negative η.

At η = ∞, f 
1 = f 

2 = 1 and f 
1 = f 

2 = f 
1 = f 

2 = 0 which allows the two constants to
be determined. A perfect gas with ρμ = 1 is assumed. The perfect-gas law and the assump-
tion of constant specic heat cp will give the relation that 1/ρ = h. Following the earlier
analysis [10], the pressure gradient in the η direction can be shown to be a function of η

only. Thereby, ∂2p/∂η∂z = 0 and ∂2p/∂η∂χ = 0. This implies that ∂p/∂z and ∂p/∂χ are
independent of η. Consequently, certain constants appear in the z-momentum equation and
the χ -momentum equation. These two constants are determined by the boundary condition
on the momentum equations. Specically, we obtain

f 
1 + ff 

1 + S1[h − (f 
1)

2] + ω2
κ

4S1
(1 − h) = 0

f 
2 + ff 

2 + S2[h − (f 
2)

2] = 0

(11)

The boundary conditions use the assumption that two velocity components asymptote to
the constant values uξ (∞), uξ (−∞), w(∞), and w(−∞) at large magnitudes of η. The
stream function bounding the two incoming streams is arbitrarily given a zero value and
placed at η = 0.

f 
1(∞) = 1; f 

1(−∞) =


h−∞ +
(

ωκ

2S1

)2

(1 − h−∞); f1(0) = 0;

f 
2(∞) = 1; f 

2(−∞) =
√

h−∞; f2(0) = 0

(12)

When density varies through the ow because of heating or variation of composition,
uξ and w vary with χ , thereby creating a shear stress and vorticity albeit that the frame
transformation removed vorticity and shear from the incoming ow.

The dependence of uχ on f ≡ S1f1 + S2f2 is shown by Equation (9). Thus, the function
f will be important in determining both the eld for uχ and the scalar elds.

Consequently, f as well as f1 and f2 depend on both S1 and S2, not merely on S1 + S2.
That is, the particular distribution of the normal strain rate between the two transverse
directions matters. f and f1 also depend directly on ωκ (unless S1 = 0). f2 depends on ωκ

indirectly through its coupling with f1.
Here, an exact solution of the variable-density Navier–Stokes equation is obtained

subject to determination of h through solutions of the energy and species equations as



10 W. A. Sirignano

discussed below. Thus, the solution here is the natural solution, subject to neglect of terms
of O(ξ 2) and O(z2).

The similar form of the scalar equations becomes

Y 
m + PrfY 

m = −Prω̇m; m = 1, 2, . . . ., N

h + Prfh + (Pr − Sc)N
m=1hmY 

m = PrN
m=1hf ,mω̇m

(13)

The boundary conditions are

h(∞) = 1; h(−∞) = 1

ρ−∞
;

Ym(∞) = Ym,∞; Ym(−∞) = Ym,−∞;

(14)

Equation (13) indicate a dependence of the heat and mass transport on f ≡ S1f1 + S2f2.
Manipulation of the rst two equations of (13) leads to an ODE for f with S1S2 and S1S2f 

1 f 
2

as parameters, clearly indicating that generally f will have a dependence on S1S2. Thus,
the behaviour for the counterow can vary from the planar value of S1 = 1, S2 = 0 (or vice
versa) or from the case S1 = S2 = 1/2. This clearly shows that distinctions must be made
amongst the various possibilities for three-dimensional strain elds as S1S2 varies between
large negative numbers and 1/4. An exception is the incompressible case with constant
properties where the S1S2 terms cancel in the equation for f.

The vorticity ωκ impacts directly f1 and f ; thereby, it is affecting the velocity eld.
Then, through the advection of the scalar properties, there is impact on mass fractions
and enthalpy. If the vorticity ωκ = 0, a simple inspection of the governing ODEs leads to
the conclusion that the values for f1, f 

1, f2, f 
2, u/x, and w/z can be interchanged with the

values for f2, f 
2, f1, f 

1, w/z, and u/x, respectively, when S1 and S2 are replaced by 1 − S1

and 1 − S2, respectively.
The analysis is formulated in identical fashion to the approach of [10]. However, there,

with two directions for extensional strain rate in the rotating frame of reference, both S1 and
S2 are positive numbers. However, in the computations here, we consider the vortex tube
with inward swirl so that, in the far eld, there are two directions of compressive strain
and only one direction of extensional strain. That extensional strain is aligned with the
vorticity vector. Thus, here, S1 ≤ 0 and S2 ≥ 1. The basic case takes the two compressive
strain rates to be equal; thereby, S1 = −1.0 and S2 = 2.0.

Consider the production or consumption rate of a particular species over the counterow
volume. We can either integrate over a volume using the original form in Equation (8) or,
more conveniently, using Equation (13) to get exactly the same result. Consider the volume
−a < ξ < a, −b < y < b, −c < z < c. The choices of lengths a and c do not matter on a
per-unit-volume basis since mass fraction Ym and reaction rate ω̇m do not vary with x or z.
c is chosen to be of the order of the Kolmogorov scale. Volume V = 8abc and ρ̃ω̇m is the
average mass production rate over the volume. From integration of Equation (13) after
multiplication by density ρ and division by PrV,

∫ a

−a

∫ b

−b

∫ c

−c

ρ

PrV
[Y 

m + PrfY 
m + Prω̇m] dx dy dz = 0; m = 1, 2, . . . ., N

ρ̃ω̇m ≡ 1

V

∫

V
ρω̇m dV = − 1

2b

∫ η(b)

η(−b)

fY 
mdη; m = 1, 2, . . . ., N
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∫ a

−a

∫ b

−b

∫ c

−c

ρ

PrV
[h + Prfh − PrN

m=1hf ,mω̇m] dx dy dz = 0

N
m=1hf ,mρ̃ω̇m = 1

2b

∫ η(b)

η(−b)

fh dη (15)

Here, b is considered large enough so that Y 
m = 0 and h = 0 at those boundaries are good

approximations. However, the value for ρ̃ω̇m depends strongly on the chosen domain size
2b, which has a value of O(10) typically in our analysis.

Consider a species m that is owing inward away from η = ∞ towards η = 0. If it is
being produced (consumed), the derivative Y 

m in Equation (15) will be negative (positive)
for η > 0 where velocity v < 0 and f > 0. The signs are opposite for a species owing
inward away from η = −∞ and towards η = 0. The equation provides two ways to eval-
uate the average production (consumption) rate for species m. The volume integral of the
reaction rate has highly nonuniform integrand values over the space while the outow
integral over η has a smoother variation of the integrand.

2.4. Chemical kinetics model

The above analysis applies for both diffusion-ame and partially-premixed-ame congu-
rations. Multi-branched ames can also be described. While the analysis allows for the use
of detailed chemical kinetics, we focus here on propane-oxygen ows with one-step kinet-
ics. Westbrook–Dryer [28] kinetics are used; they were developed for premixed ames
but any error for nonpremixed ames is often viewed as tolerable here because diffusion
generally is rate-controlling. Using asterisks to denote dimensional quantities,

ω̇∗
F = −A∗ρ∗0.75Y 0.1

F Y 1.65
O e−50.237/h̃ (16)

where the ambient temperature is set at 300 K and density ρ∗ is to be given in units
of kilograms per cubic meter. A∗ = 4.79 × 108 (kg/m3)−0.75/s. The dimensional strain
rate S∗

1 + S∗
2 (at the sub-grid scale) is used to normalise time and reaction rate. In

non-dimensional terms,

ω̇F = −A∗ρ∗
∞

0.75

S∗
1 + S∗

2

h̃−0.75Y 0.1
F Y 1.65

O e−50.237/h̃

ω̇F = − Da

h̃0.75
Y 0.1

F Y 1.65
O e−50.237/h̃ (17)

The equation denes the Damköhler number Da. We dene K so that Da ≡ KDaref where

Daref ≡ Ã(10 kg/m3)0.75

(104/s)
= 2.693 × 105; K ≡

[
ρ∗

∞
10 kg/m3

]0.75 104/s

S∗
1 + S∗

2

(18)

10 kg/m3 and 10,000/s are conveniently chosen as reference values for density and strain
rate, respectively.

The ow in the ame region will have a very low Mach number; thereby, for the pur-
poses of the energetics and the thermodynamics, the pressure can be considered to be well
approximated as uniform. Pressure gradients need to be considered only for the momen-
tum equations. Thus, in addressing chemical kinetics, the pressure is taken as uniform
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Figure 2. Scalar properties for diffusion ame with varying vorticity.
S1 = −1.00; S2 = 2.00; K = 0.275. ωκ = 0, blue, no ame; ωκ = 0.5, purple, no ame;
ωκ = 1.0, red, ame. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen mass
fraction, νYO; (d) integral of reaction rate,


ω̇Fdη.

over the eld. It is not necessary to set pressure (or its proxy, density) and the strain rate
separately for a one-step reaction. For propane and oxygen, the mass stoichiometric ratio
ν = 0.275. The non-dimensional parameter K will increase (decrease) as the strain rate
decreases (increases) and/ or the pressure increases (decreases). K = 1 is our reference
case. The value of K will be varied as needed to address the variations in strain rate and
pressure that affect premixed amelets, diffusion amelets, and multi-branched amelets.

3. Computational results and discussion

The ordinary differential equations are solved numerically using a relaxation method with
a pseudo-time variable and central differences. The parameters that are varied are K, Pr, ωκ

and S1 (and thereby S2 = 1 − S1). Here, calculations have Sc = Pr = 1 with emphasis on
the effect of variation in K, i.e. pressure and strain rate.

Here, the effects of vorticity on three types of oxygen-propane ame structure will be
examined. In Subsection 3.1, a diffusion ame near its ammability is considered. The
premixed ame is discussed in Subsection 3.2 while the multi-branched ame calculations
are shown in Subsection 3.3. The basic calculations pertain to the inward swirling ow
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Figure 3. Velocity behaviour for diffusion ame with varying vorticity.
S1 = −1.00; S2 = 2.00; K = 0.275. ωκ = 0, blue, no ame; ωκ = 0.5, purple, no ame;
ωκ = 1.0, red, ame, ow reversal. (a) mass ux per area, f = ρuχ ; (b) velocity component,
f 
1 = uξ /(S1ξ); (c) velocity component, f 

2 = w/(S2z); (d) velocity component, uχ .

with Pr = Sc = 1 and equal compressive strain rate in the far eld from two directions in
the rotating frame of reference, i.e. S1 = −1.0 and S2 = 2.0. Note that the same code for
these calculations was used by [10] where both S1 and S2 were positive. Values for K =
Da/Daref and thereby for the Damköhler number Da are deliberately chosen in the vicinity
of the ammability limit where vorticity and its centrifugal effect can be signicant. In
addition to boundary values at η = ∞ and η = −∞, the system of equations has four
independent, non-dimensional parameters as inputs: ωκ , S1 = 1 − S2, Pr = Sc, and Da =
KDaref .

3.1. Diffusion amelet calculations

First, we treat a situation with a three-dimensional diffusion-ame structure. Figures 2
and 3 show the inuence of vorticity on the amelet stability near the extinction limit.
The rotation of the amelet due to vorticity causes a centrifugal effect on the counterow
velocity and thereby on the residence time in the vicinity of the reaction zone. K = 0.275
with values of ωκ = 0, 0.5, and 1.0 are examined and reported here.
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Figure 4. Effects of normal strain on scalar properties for diffusion ame. K = 0.275; ωκ = 1.0.
S1 = −1.25, S2 = 2.25: red, no ame. S1 = −1.00, S2 = 2.00: blue, ame. S1 = −0.75, S2 = 1.75:
orange, ame. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen mass fraction,
νYO; (d) integral of reaction rate,


ω̇Fdη.

Figure 2 shows that, without rotation and also with ωκ = 0.5, there is negligible reaction
rate and heat release, essentially yielding extinction. Fuel and oxidiser just diffuse and
mix without signicant exothermic reaction. Further increase of the rotational rate with
ωκ = 1.0, however, yields a strong ame with a narrow reaction zone.

The heat release causes a decrease of the density in the vicinity of the ame. A plane
still exists in the rotating reference frame where two different mixtures come together in
a direction aligned with the scalar gradient while turning into the z direction aligned with
the vorticity. The expanding gas can cause a ow reversal of the inward ow from the ξ -
direction, orthogonal to the scalar gradient, as shown in Figure 3. The increased rotational
rate produces the centrifugal acceleration that inhibits radially inward ow of the heavier
gas and allows the expansion and velocity reversal for the lighter, hotter gas. Note that the
development of negative values for f 

1 means that with the value S1 ≤ 0, the direction of
the velocity component uξ becomes radially outward, i.e. uξ > 0 for ξ > 0 and uξ < 0 for
ξ < 0.

Clearly, the combination of uid rotation, variable density, and three-dimensional struc-
ture have major consequences for amelet behaviour. The specic mechanism is not
immediately obvious but can be inferred from the results. Figure 3(b,c) indicate that the
strong swirl causes the reversal of the uξ velocity and an increase in the w velocity, both
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Figure 5. Effects of normal strain on ow properties for diffusion ame. K = 0.275; ωκ = 1.0.
S1 = −1.25, S2 = 2.25: red, no ame. S1 = −1.00, S2 = 2.00: blue, ame, ow reversal.
S1 = −0.75, S2 = 1.75: orange, ame, ow reversal. (a) mass ux per area, f = ρuχ ; (b) velocity
component, f 

1 = uξ /(S1ξ); (c) velocity component, f 
2 = w/(S2z); (d) velocity component, uχ .

now being outward ows from the combustion zone. However, the fractional decrease in
density implied by Figure 2(a) is signicantly larger than the fractional increase in outward
velocity. So, the outward mass ow rate is reduced which is consistent with the reduction
of the inward mass ow rate when the inward ow ceases to come from both the ξ and χ

directions and is limited to only the χ direction. Thereby, an increase in residence time of
the ow in the reaction domain is allowed. This increase in vorticity and thereby in swirl
rate changes the ammability limit.

In Figures 4 and 5, the effect of the imposed ambient normal strain rates is examined
for a situation with ωκ = 1. Flame extinction results in this example with an increase of
the magnitude of the ξ normal strain rate S1 beyond the value of the χ normal strain
rate. So, S1 + S2 = 1 < |S1| = 1.25 yields no ame while a strong ame is established
for the two cases where S1 + S2 = 1 ≥ |S1|. Modest decreases in the integrated reaction
rate, the mass ux f, and the amount of ow reversal occur with a reduction of imposed
strain in the ξ direction from the base case where S1 = −1.0; simultaneously, a modest
increase in peak temperature and enthalpy occurs. Apparently, the reduced mass ux and
associated increase in residence time allows for a slightly greater temperature rise although
the reaction rate is slightly reduced. On the other hand, the increase in the magnitude of S1

from the base case would, if density were reduced because of an established ame, yield
too low a residence time to hold a ame; so, no ame occurs.
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Figure 6. Effects of Prandtl number on scalar properties for diffusion ame.
K = 0.275; ωκ = 1.0; S1 = −1.00; S2 = 2.00. Pr = 1.3: blue, ame. Pr = 1.0: red, ame.
Pr = 0.7: orange, no ame. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen
mass fraction, νYO; (d) integral of reaction rate,


ω̇Fdη.

The sensitivity to thermal and mass diffusivities is shown in Figures 6 and 7. These
diffusivities increase as the Prandtl number Pr decreases. Thus, higher Pr results in thinner
diffusion layers as shown in the gures. However, when the diffusivity is too large, heat is
carried away over too large a domain to maintain a ame.

The comparison of the results here for diffusion ames with the results of the earlier rota-
tional amelet model without inward swirl [10] are interesting. Here, an approximately
40-per-cent-larger value of Da is needed to prevent extinction. The incoming ow from
two directions apparently has a shorter residence time for the same strain rate. The quali-
tative nature of the results as functions of η are similar for the two models. However, the
directions of the three-dimensional velocity components relate to critical physics and are
consequential.

3.2. Premixed amelet calculations

The analysis can apply to a situation where the inward swirling uid has opposing streams
of a combustible mixture and a hot inert gas (likely combustion products). A premixed
ame can be established. As noted in an early study for counterow amelet [10], the
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Figure 7. Effects of Prandtl number on ow properties for diffusion ame.
K = 0.275; ωκ = 1.0; S1 = −1.00; S2 = 2.00. Pr = 1.3: blue, ame, ow reversal. Pr = 1.0:
red, ame, ow reversal. Pr = 0.7: orange, no ame, no ow reversal. (a) mass ux per area,
f = ρuχ ; (b) velocity component, f 

1 = uξ /(S1ξ); (c) velocity component, f 
2 = w/(S2z);

(d) velocity component, uχ .

premixed ame requires a Da value that is orders of magnitude larger than the required
value for a diffusion ame. The vorticity and centrifugal motion can have consequence,
especially near a ammability limit. Figures 8 and 9 have some interesting results. At a Da
value of one-hundred to two-hundred-fty times the reference value, i.e. K = 100, 200,
250, a strong premixed ame is shown to exist with or without a vorticity eld. Applica-
tion of swirl through the vorticity results in the same peak enthalpy or temperature and
nearly the same ame speed (in the χ direction). The ξ component of velocity is seen to
reverse direction with or without imposed vorticity. However, the increase in rotational
rate and centrifugal acceleration decreases the magnitude of the reversal. The premixed
ame moves slightly farther upstream as measured by the η value as swirl is applied. It
likely occurs because, with less reversal in the ξ direction, the expansion in the η direction
is enhanced.

A decrease in Da to a situation where K = 20 results in extinction with vorticity in the
range up to ωκ = 1.0. That situation is studied further with examination of the effect of
vorticity on the extinction of the ame. Results in Figures 10 and 11 show four cases with
K = 37.5 and ωκ varying between 0 and 1.5. For 0.5 ≥ ωκ ≥ 0, a ame cannot survive
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Figure 8. Scalar properties for premixed ame with varying Damköhler number and vortic-
ity. S1 = −1.00, S2 = 2.00. K = 250, ωκ = 1.0, red, ame; K = 200, ωκ = 1.0, blue, ame;
K = 100, ωκ = 1.0, purple, ame; K = 100, ωκ = 0, dash blue, ame; K = 20, ωκ = 1.0, green,
no ame. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen mass fraction, νYO;
(d) integral of reaction rate,


ω̇Fdη.

while, for ωκ ≥ 1.0, a strong premixed ame exists. In the range where a ame exists, the
burning rate ame speed increases slightly as the vorticity magnitude increases. Due to
the centrifugal effect, uξ decreases in the ame region as ωκ increases. In fact, it reverses
direction near the ame. However, uχ increases with ωκ so the mass ux and burning rate
increase as well.

It is seen here for the premixed ame, as well as for the diffusion ame, that the rota-
tional amelet with inward ow in one direction only [10] can avoid extinction at lower
values of Da than is possible for the inward swirling amelet.

3.3. Multi-branched amelet calculations

Recent works have addressed the structure of multi-branched amelets with a central dif-
fusion ame and one or two premixed ames. The premixed ames can be fuel rich or fuel
lean. They might be driven by heat transfer from the stronger diffusion ame. With three
ames, the diffusion ame is centred between the two premixed ames and has the high-
est temperature. See [10,26,29] which address three general congurations: a stagnation
ow, counterow imposed on a shear layer,and a rotational amelet. Here, we examine the
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Figure 9. Velocity behaviour for premixed ame with varying Damköhler number and vortic-
ity. S1 = −1.00, S2 = 2.00. K = 250, ωκ = 1.0, red, ame; K = 200, ωκ = 1.0, blue, ame;
K = 100, ωκ = 1.0, purple, ame; K = 100, ωκ = 0, dash blue, ame; K = 20, ωκ = 1.0, green,
no ame. (a) mass ux per area, f = ρuχ ; (b) velocity component, f 

1 = uξ/(S1ξ); (c) velocity
component, f 

2 = w/(S2z); (d) velocity component, uχ .

multi-ame structure and behaviour for the inward-swirling amelet. Figures 12 and 13
show the computational results for relatively high values of Da. Later, Figures 14 and 15
will address the structure and behaviour for values of Da near the ammability limits. The
effects of vorticity are especially of interest.

It is sometimes convenient to present the amelet scalar variables as functions of a
conserved scalar instead of as a function of the spatial coordinate. For our simple, one-
step kinetics calculations, conserved scalars are formed by dening the Shvab Zel’dovich
variables α ≡ YF − νYO and β ≡ h + νYOQ̃ where Q̃ is the fuel heating value normalised
by h∗(∞). Then, Equation (13) yields

α + Pr(S1f1 + S2f2)α
 = 0

β  + Pr(S1f1 + S2f2)β
 = 0 (19)

In the above relations, the required constants are S1, S2 = 1 − S1, ρ−∞, ν, Q̃, Pr. Solutions
are coupled to the simultaneous solutions of Equation (11). A normalised conserved scalar
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Figure 10. Scalar properties for premixed ame for premixed ame with varying vorticity near
extinction value for Damköhler number. K = 37.5, S1 = −1.00, S2 = 2.00. ωκ = 1.5, blue, ame;
ωκ = 1.0, red, ame; ωκ = 0.5, purple, no ame; ωκ = 0, dash blue (sometimes covered by purple),
no ame. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen mass fraction, νYO;
(d) integral of reaction rate,


ω̇Fdη.

 varying between the values of 0 and 1 can be formed as shown by Sirignano.

 ≡ α − α−∞
α∞ − α−∞

= β − β−∞
β∞ − β−∞

(20)

The use of plots of scalar variables as a function of  are helpful in identifying the location
of reaction zones in the ame structure.

In Figures 14 and 15, results are shown for a conguration with a fuel-rich mixture at
η = ∞ and a fuel-lean situation at η = −∞. The fuel-rich mixture exists with YF = 2/3
and YO = 1/3 ows inward on one side of the swirling ame and a fuel-lean mixture with
YF = 1/12 and YO = 11/12 ows inward from the other side.

For a sufciently high value of Da, a strong diffusion ame and a weak, fuel-rich pre-
mixed can co-exist without a rotational ow. See the case with K = 0.180 and ωκ = 0 in
the gures. The weak premixed ame is indicated by the region of negative second deriva-
tive for enthalpy on the right-side of Figure 14(e). (A negative second derivative also exists
on the right-side of Figure 14(a) but is more difcult to detect.) In Figure 14(d), the dif-
fusion ame contributes to the region with the largest rst derivative (the reaction rate
which is the integrand) while the premixed ame contributes in the region where the rst
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Figure 11. Velocity behaviour for premixed ame with varying vorticity near extinction value for
Damköhler number. K = 37.5, S1 = −1.00, S2 = 2.00. ωκ = 1.5, blue, ame; ωκ = 1.0, red, ame;
ωκ = 0.5, purple, no ame; ωκ = 0, dash blue (sometimes covered by purple), no ame. (a) mass ux
per area, f = ρuχ ; (b) velocity component, f 

1 = uξ /(S1ξ); (c) velocity component, f 
2 = w/(S2z);

(d) velocity component, uχ .

derivative is still positive but smaller. The existence of multiple ames is also indicated
by consumption of oxygen to the right of the diffusion ame in 14(c). The weak premixed
ame is driven by heat diffusion from the strong diffusion ame. The heating from the dif-
fusion ame allows the premixed ame to exist in the multi-branched structure at values
of Da where a premixed ame could not survive independently in isolated fashion. More
information about these multi-ame structures is provided by [29].

For the reduced values of Damköhler number Da, rotation is needed to produce a
ame. For example, as the same gures show with K = 0.170, a strong ame appears
with ωκ = 0.75 but there is no ame development possible with ωκ ≤ 0.5. Similarly,
for still smaller Da, even greater rotational rate is needed; for K = 0.160, ωκ = 1.50
produces a strong ame, while for ωκ ≤ 1.00, no ame is sustained with any vorticity
value.

Figure 15(b) indicates that a strong ame will cause ow reversal in the ξ direction due
to gas expansion.



22 W. A. Sirignano

Figure 12. Scalar properties for multibranched ame with varying Damköhler number and vortic-
ity. S1 = −1.00, S2 = 2.00. K = 1.00: ωκ = 1.0, blue; ωκ = 0.50, red; ωκ = 0, orange. K = 0.300:
ωκ = 1.0, green; ωκ = 0, purple. (a) enthalpy, h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxy-
gen mass fraction, νYO; (d) integral of reaction rate,


ω̇Fdη; (e) enthalpy, h/h∞, versus conserved

scalar, .

4. Conclusions

A new amelet model is developed to treat a range of ame structures in a steady, stretched,
three-dimensional vortex. Non-premixed ames, premixed ames, and multi-branched
ames are addressed through a unied theory. The creation of a contrived parameter such
as a progress variable is avoided. Four nondimensional parameters are controlling: the
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Figure 13. Velocity behaviour for multibranched ame with varying Damköhler number and
vorticity. S1 = −1.00, S2 = 2.00. K = 1.00: ωκ = 1.0, blue; ωκ = 0.50, red; ωκ = 0, orange.
K = 0.300: ωκ = 1.0, green; ωκ = 0, purple. (a) mass ux per area, f = ρuχ ; (b) velocity
component, f 

1 = uξ /(S1ξ); (c) velocity component, f 
2 = w/(S2z); (d) velocity component, uχ .

imposed, normalised compressive strain rate S1; the imposed,normalised vorticity ωκ ; the
Damköhler number Da; and the Prandtl number Pr which equals the Schmidt number Sc
here. The effects of these quantities are shown in the computational results. While this new
theory is established for multi-step oxidation chemistry, a simple example of one-step,
propane-oxygen kinetics is considered.

The model is developed with an analysis that parallels the method for the rotational
amelet [10]; however, the essential physical difference is in the applied normal strain rates
and the resulting ow directions for the three velocity components. Both models involve
a stretched vortex. However, This new model has inow in two directions and outow in
one direction whereas the prior work had only one inow direction. This difference results
in the inward swirling ow which modies the important centrifugal effect that appears
when vorticity, variable density, and three-dimensional structure are interactive. The early
work of [4] was pioneering and did involve inward swirl modelled after Burgers work [19].
A three-dimensional structure and spatially varying density were not examined there; thus,
the vital centrifugal motion was not included.

The effects of the inward swirl inherent to the stretched vortex are shown to be signi-
cant, especially in modifying the ammability limits. Variable density is shown to have a
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Figure 14. Scalar properties for multibranched ame with varying vorticity.
S1 = −1.00, S2 = 2.00. Cases with a strong ame: K = 0.180, ωκ = 0, solid blue;
K = 0.170, ωκ = 0.75, red; K = 0.160, ωκ = 1.50, purple. Other curves show no ame (extinction)
and all fall on the dashed blue line: K = 0.170, ωκ = 0.50; K = 0.160, ωκ = 1.00. (a) enthalpy,
h/h∞; (b) fuel mass fraction, YF ; (c) mass ratio x oxygen mass fraction, νYO; (d) integral of reaction
rate,


ω̇Fdη; (e) enthalpy, h/h∞, versus conserved scalar, .

critical role since the centrifugal force created through the vorticity has impact in that case.
In order to avoid extinction, premixed ames require a minimum value of Damköhler num-
ber Da (or, equivalently, maximum normal strain rate value) that is orders of magnitude
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Figure 15. Velocity behaviour with varying vorticity for multibranched ame.
S1 = −1.00; S2 = 2.00. Cases with a strong ame: K = 0.180, ωκ = 0, solid blue;
K = 0.170, ωκ = 0.75, red; K = 0.160, ωκ = 1.50, purple. Other curves show no ame (extinction)
and all fall on the dashed blue line: K = 0.170, ωκ = 0.50; K = 0.160, ωκ = 1.00. (a) mass ux per
area, f = ρuχ ; (b) velocity component, f 

1 = uξ /(S1ξ); (c) velocity component, f 
2 = w/(S2z); (d)

velocity component, uχ .

larger (smaller) than needed for diffusion ames or multi-ame structures. This conclu-
sion is consistent with other models of amelet-vortex interactions, e.g. the counterow
model [10] and the vortex-layer (or vortex-sheet) model [30] model. Thereby, the existence
of subgrid premixed amelets is quite small, possibly negligible.

For any of the ame structures, the increased vorticity can move the ammability limit
to lower Da values. Higher Da (for proper ambient mixtures) makes multi-branched ames
more likely. Heat from the diffusion ame can drive the premixed ames. The distribution
of the normal compressive strain between the directions for incoming swirling ow can
affect the results. The variation of Pr within the expected range can have some effect on
the ammability limit.

Computational results here with inward swirl, when compared to the results for the
rotational amelet without the inward swirl [10], indicate that notably larger Da values
are required to avoid extinction. One would expect that amelets in turbulent combustion
would thereby be less likely to form in vortex tubes that in other vortical structures.
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For future studies, several issues are important. The computations should be extended to
cases with detailed chemical kinetics, detailed transport models, and improved equations
of state. Coupling of the amelet model should be made with a RANS or LES analysis
for a practical, reacting, mixing, shear ow. Direct numerical simulations of reacting ows
that give improved correlations of resolved-scale velocity gradients with the smallest-scale
velocity gradients would be helpful.
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