mae_header.jpg (64717 bytes)

Home About us Undergraduate Graduate Research People Seminars


Thematic areas

Research in the Department of Mechanical and Aerospace Engineering can be classified under the following four thematic areas.   A chart shows the distribution of projects under each area and the engagement of faculty.   Information on experimental and computationa laboratories can be found in faculty websites.

Continuum mechanics faculty study the physics of fluids, physics and chemistry of solids, and structural mechanics. Areas of emphasis in fluid mechanics include incompressible and compressible turbulent flows, multiphase flows, chemically reacting and other nonequilibrium flows, aeroacoustics, aerooptics, and fluid-solid interaction. In the field of solid mechanics, research and course work emphasize theoretical and computational approaches which contribute to a basic understanding of and new insight into the properties and behavior of condensed matter. General areas of interest are large-strain and large-rotation inelastic solids, constitutive modeling, and fracture mechanics. Computational algorithms center on boundary element methods and the new class of meshless methods. Studies in structural mechanics involve the analysis and synthesis of low-mass structures, smart structures, and engineered materials, with emphasis on stiffness, stability, toughness, damage tolerance, longevity, optimal life-cycle costs and self-adaptivity.

Research in power, propulsion, and environment encompasses aerospace propulsion, combustion and thermophysics, fuel cell technologies, and atmospheric physics and impacts. In aerospace propulsion, particular emphasis is placed in the areas of turbomachinery, spray combustion, combustion instability, innovative engine cycles, and compressible turbulent mixing. The topic of combustion and thermophysics addresses the fundamental fluid-dynamical, heat-transfer, and chemical mechanisms governing combustion in diverse settings. Fuel cell research encompasses the development of fuel-cell technology, hybrid engines, and thermionic devices. Activities cover the thermodynamics of energy systems, the controls associated with advanced energy systems, and systems analyses. The area of atmospheric physics and impacts deals with the modeling and controlling of chemical pollution, particle dispersion, and noise emission caused by energy-generation and propulsion devices. Research on atmospheric turbulence addresses the energy exchanges between the Earth's land and ocean surfaces and the overlying atmosphere.

Micro/nanomechanics encompasses the thrusts of miniaturization engineering, mechatronics, and biotechnology. Miniaturization engineering is relevant to the development of small-scale mechanical, chemical and biological systems for applications in biotechnology, automotive, robotic, and alternative energy applications. It involves the establishment of scaling laws, manufacturing methods, materials options and modeling from the atom to the macro system. Mechatronic design is the integrated and optimal design of a mechanical system and its embedded control system. Main focus research is the design, modeling, and characterization of Micro Electro Mechanical Systems (MEMS). Particular emphasis is placed on analysis and design of algorithmic methods and physical systems that realize sensor-based motion planning. The thematic area of biotechnology involves the understanding, modeling, and application of fundamental phenomena in mechanical engineering, electrical engineering, and chemistry towards the development of bio-sensors and actuators.

Systems and design research is conducted in the areas of dynamic systems optimization and control, biomechanical engineering, robotics and machine learning, and design engineering. Advanced concepts in dynamics, optimization and control are applied to the areas of biorobotics, flight trajectory design, guidance and navigation, learning systems, micro sensors and actuators, flexible structures, combustion, fuel cells, and fluid-optical interactions. Biomechanical engineering integrates physiology with engineering in order to develop innovative devices and algorithms for medical diagnosis and treatment. The focus of robotics and machine learning is the creation of machines with human-like intelligence capabilities for learning. Faculty in design engineering develop methodologies to address issues ranging from defining the size and shape of components needed for force and motion specifications, to characterizing performance in terms of design parameters, cost and complexity.

Affiliated Centers

Advanced Power and Energy Program (APEP) - provides education, research and development, beta testing, and demonstration to bring new energy technologies to market.

Micro/Nano Fluidics Fundamentals Focus Center (MF3) - composed of academic, government and commercial institutions across the country dedicated to the development of the basic science and technology of micro/nanoscale fluidics and their advancement toward applications in a number of commercial and military arenas.

Integrated Nanosystems Research Facility (INRF) - dedicated to the research and development of technology for integrated micro and nanosystems through research, education and outreach

(c) 2010 Mechanical and Aerospace Engineering
4200 Engineering Gateway
Irvine, CA 92697-3975