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3D Wave Equation
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Linearization and separation of variables
in cylindrical combustion chamber
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Wall Boundary Condition and

Oscillation Mode
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Transverse character

Boy
of mode

1 1.8413 | First tangential

1 3.0543 | Second tangential

2 3.8317 | First radial

1 4.2012 | Third tangential

3 7.0156 | Second radial

2 5.3313 | Combined first tangential and
first radial

3 8.5263 | Combined first tangential and
second radial

2 6.7060 | Combined second tangential

and first radial




Modes of Transverse Oscillation




Radial and Tangential Velocities
for Linear Perturbations
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Determination of Frequency and Growth Rate

Growth Rate
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Crocco Sensitive-Time-lag Theory

n and tau are two
parameters dependent
largely on propellant

and injector design. The
theory could be developed,
alternatively, with a gain

and phase, e.g., a complex
number giving the
ratio of burning-rate
perturbation to pressure
perturbation.




Stability Limits for Longitudinal Mode
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Nozzle Admittance Theory
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1 Geometry of convergent portion of nozzle

-- Generally, the nozzle dimensions will be of the same order as
the wavelength. Therefore, the determination of the waveform
is important; the combustion chamber oscillation is implicitly
affected through the use of an admittance function applied as a
condition at the chamber exit (nozzle entrance).

-- Short (small) nozzles will behave in a quasi-steady manner.

-- Calculation results can be scaled to cover an infinite range of
nozzle shapes.




Linear Nozzle Flow Oscillations
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Analysis of Longitudinal Variation

Solution at Singular Point (Nozzle Throat)
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Special Case of Isentropic Flow

A first-order ordinary differential equation can be formed; it
is integrated starting from the throat in the upstream
direction, using the analytic solution at the throat. It directly
Yields information about the admittance function.




Similarly, the general case can be recast with first-
order ODEs integrated starting from the throat.
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:A certain combination of admittance coefficients
is useful for transverse oscillations.
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Acoustic Liners

Acoustic Liners can be

/ 7 7 Helmholtz resonators,
quarter wave tubes,
‘ or a hybrid of both.
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is the exit jet which
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Acoustic Liner Perturbations

The physics of the Helmholtz resonator involve four simple aspects:

1) an oscillating external pressure which drives the Helmholtz
resonator oscillation;

2) a cavity which essentially is a capacitor with time-varying mass
and density due to alternating mass influx and efflux ;

3) oscillatory motion in the orifice with friction losses that are the
primary linear dissipative mechanism; and

4) the jet that alternates position between the two orifice ends and
provides the stagnation pressure loss which is the
primary nonlinear dissipative mechanism.

The pressure drop across the jet is proportional to the square of

the jet velocity as dictated by Bernoulli’s Law. Therefore, in the
perturbation scheme here, pressure perturbation is made
proportional to the amplitude parameter while velocity perturbation
is proportioned to the square root of that amplitude parameter.



Admittance for Helmholtz Resonator




Admittance for Quarter-Wave Tube

Longitudinal standing wave Transverse travelling wave
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Nonlinear Longitudinal Mode Instability with Shocks

Premixed Combustion (no time lag

Concentrated Combustion Zone
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Perturbation Method
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€ is the perturbation parameter and can be considered
as a measure of the amplitude of the oscillation. Coordinates
are perturbed here as well — An extension of Poincare’s method.



One-dimensional, Unsteady Gasdynamic Equations
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Boundary Conditions

Combustion Zone
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The amplitude parameter € and the curvature parameter A
are determined from the second-order analysis (similar to
Poincare’s elimination of secular terms)
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Flowfield Solutions
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Pressure and Velocity Waveforms
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Comparison of Theory and Experiment

- ; Experimental Results From Princeton Gas Rocket
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Nonlinear Combustion Instability and Triggering Action
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Effects of displacement from neutral line

Nonlinear Instability
with Time Lag
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Longitudinal Mode Oscillation without Shock Waves

Pressure wave form at nozzle with below-resonant oscillation
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¢ DIRICHLET BOUNDARY CONDITIONS ARE USED AT THE
COMBUSTOR ENLET WWMA%FLOW(MDEPENDENT),

e THE PRESSURE AT THE INLET IS DETERMINED BY TAK-
ING THE STAGNATION PRESSURE THERE TO BE CON-

e OVERALL EQUIVALENCE RATIO IS SPECIFIED AT THE

« AT m OUTLET NHMANN DOUNDARY CONDITIONS
NCENTMTION AREEM—

NUMBER A'rmm'r"rowoonmx'r(cmcco
AND SIRIGNANO (1966))

e INITALLY THE GAS-PHASE TEMPERATURE, VELOCITY,
PRESSURE AND SPECIES CONCENTRATION ARE SPEC-
. FOR THE LIQUID-PHASE THE DROPLET RADIUS,
LOCATION VELOCITY AND TEMPERATURE ARE SPEC-
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e THREE DISTINCT FREQUENCIES OF OSCILLATIONS, WHICH
MAY EXIST SIMULTANEOUSLY, ARE OBSERVED.

— THE ONE MOST PREVALENT IS NEAR THE ACOUS-
> FREQUENCY OF THE COMBUSTOR, WHICH IS

WER FREQUENCY OF ABOUT 100 Hz IS ALSO
OBSERVED FOR LARGER i.e. 75 AND 100 pm DROPLETS.

— AT HIGHER EQUIVALENCE RATIOS WE SEE FREQUEN-
CIES OF ORDER OF FEW THOUSAND Hz, WHICH COR-
RESPOND TO THE ARTIFICIAL INJECTION FREQUENCY
OF THE DROPLETS.




¢ VAPORIZATION IS RATE CONTROLLING. THE COMBUS-
TION PROCESS CAN OCCUR IN EITHER A STABLE OR
UNSTABLE MODE.

¢ LOW FREQUENCY OR ENTROPY OSCILLATIONS RESULT
WHEN THE CHARACTERISTIC TIME FOR DROPLET HEAT-
ING IS CLOSE TO THAT FOR THE GAS RESIDENCE.

¢ HIGH FREQUENCY OSCILLATIONS RESULT WHEN THE
RATIO OF CHARACTERISTIC TIME FOR PERIOD OF OS-
CILLATION TO DROPLET HEATING IS CLOSE TO 0.15.

e THE FREQUENCY OF FREE OSCILLATIONS IS VERY CLOSE
TO THE ACOUSTIC FREQUENCY OF THE COMBUSTOR,
AT LOWER EQUIVALENCE RATIOS. AT HIGHER EQUIV-
ALENCE RATIOS OVERTONES ARE PRESENT.




¢ IN CASES WHERE THE DAMPING OF EXCITED ACOUS-

TIC OSCILLATIONS OCCURS, THE EXCITATIONS TEND
TO DAMPEN IN ABOUT TEN CYCLES.

e THE DROPLET SIZE, FOR THE SAME EQUIVALENCE RA-
TIO AND COMBUSTOR LENGTH, HAS A PROFOUND EF-
FECT ON THE COMBUSTOR STABILITY. A RANGE OF
DROPLET RADII FOR WHICH THE COMBUSTION IS UN-

e AN INTERMEDIATE RANGE ALSO EXISTS FOR COMBUS-
TOR LENGTH, LIKE THE DROPLET RADII, WHERE THE
COMBUSTOR OPERATION IS UNSTABLE.

¢ INCREASING EQUIVALENCE RATIO ENLARGES THE DO-
MAIN OF UNSTABLE OPERATION.




Thank vyou.
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