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OBJECTIVES

U Analyze the thermodynamic advantages of augmentative
combustion during the expansion through the turbine for
turbojet , turbofan , and stationary - power gas - turbine engines.

O Study combustion in accelerating , transonic mixing layers.

O Perform computational and experimental research on
accelerating, turning transonic reacting flow.

0 Examine the use of cavities for flameholding

U Contribute to the development of a new technology. Identify
relevant scientific and technological challenges. Three SBIR awards
were made by AFRL following our first two papers showing potential
performance gains.



TURBOFAN CYCLE
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Weakness of Conventional
Engines
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TURBINE BURNER
CONCEPT
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Turbine burning has advantage in a temperature - limited system,;

many stator burners approach continuous burner.



TURBOJET PERFORMANCE
VS, COMPRESSION RATIO
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TURBOJET FUEL
CONSUMPTION VS, THRUST
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TURBOJET PERFORMANCE
VS, MACH NUMBER
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TURBOFAN PERFORMANCE
VS. FAN BYPASS RATIO
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NEW OPPORTUNITIES
WITH TURBINE BURNERS

Increased thrust for same size or same thrust at smaller
size compared to engine without augmentation.
At higher compression ratios or flight Mach numbers,
higher thrust than afterburner engines

Less fuel consumption at higher compression ratio and/or
flight Mach number. Better fuel consumption than
afterburner case throughout parameter range

For stationary power, higher power and efficiency
Lower NO, formation due to lower temperature

Potentially lower take - off noise compared to afterburner



TURBINE PASSAGE FLOW
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Flow accelerates through transonic range and turns;
streamwise and transverse accelerations can be O (10 ° g)



CHALLENGES

Ignition in a high acceleration flow.
Flame-holding in a high acceleration flow.
Combustion with short residence times.

Burning of liquid fuels under these conditions.

Cc o o 0O O

Hydrodynamic stability of stratified flow
with large transverse pressure gradient.

e . _ 10°g
O Modification of aerodynamic loading o—

on turbine blades.

U Increased heating of critical
components.

10° g



REACTING FLOW STUDIES

> Laminar Mixing-Layer Flows — axial acceleration; b.l. approx.

> Turbulent Mixing-Layer Flows — axial acceleration; b.l. approx., RANS
equations: algebraic and two-equation models.

> Straight and Curved 2-D Channel Flows — axial and transverse
acceleration; RANS equations.

> 2-D Turbine- Passage Flows -- axial and transverse acceleration; RANS
equations.

> 2-D, Unsteady Channel Flows — axial acceleration of
mixing flows in transition.

> 2-D and 3-D, Unsteady Channel Flows with Cavities-  Injection and

mixing flows in transition. Current computational studies; experimental
work completed.



REACTING MIXING LAYER

MIXING AND REACTION LAYER

METHANE

—

CHy+209+ 752Ny — COq+2H50 + 7.52N5
The chemical kinetics rate can be described as:

g = Ae~ /BT Fuyel]9[0,]°



COMPARISON WITH SIMILAR
SOLUTION : TEMPERATURE
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VELOCITY PROFILES
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Curved Channel: Reacting, Accelerating Mixing
Layer with Faster Fluid on the Outside

Temperature Vorticity
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« Compared to the non-accelerating case, the formation of large eddies by
pairing is delayed. The streamwise accelaration has a stabilizing effect.

e The combustion region curves slight inward due to varying pressure
gradient.



Converging-diverging Curved Channel: Reacting,
Accelerating Mixing Layer with Faster Fluid on the Outside

Temperature
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- Cavity on the
inner and outer
curvature

- Two aspect
ratios: L/D=1 and
L/D=3

Experimental Test Section

=Yy

thermocouples

T~

fuel injection ports

/ Shallow cavity:

L/D=3
length=5cm

/ width=10cm



Transverse distance [mm]

Temperature measurements
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Transverse distance [mm]

Temperature measurements
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Temperature measurements

0,:19.3 %

The flame is along the two side
CO: +500 ppm

walls of the cauvity.

The flame is not symmetric due to the
presence of the pyrex window.

0,:20.9 %
500 CO: 10 ppm
w L
400 |7 -
Condition:
|0 b T
200 i - Shallow cavity
L idth fmm - Counterflow injection
- Air: Re 70,000
Length [mm]

- Fuel: 10 Liters/min




Experimental Observations

Combustion with liquid fuel (heptane):

Combustion stable at Re 40,000
and 70,000 only if the shallow cavity
IS used.

With a deep cavity the mixing is not
sufficient and the heptane droplet
evaporation doesn’t occur as
efficiently.

Fuel, and therefore the flame,
penetrate farther into the main
stream with liquid injection.




Recent DNS Studies

Background and Motivation
Numerical method
OpenFOAM

2D unsteady results
Effects of injection configuration

3D unsteady results
Mesh

Effects of injection configuration

Conclusions
Future Work



Cavity and injection stability
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Injection into quiescent
field is steady at Re = 1000



Rossiter Modes

St — fL _ N= C Kk = Ratio of shear layer to freestream velocity
.= —
U + % C = Correction factor = 0.2
B M » Rossiter modes occur only for cold flow without
G = y—1 Injection in deep cavities. These modes are not
1+ T M ? seen with injection into cavity, shallow cavities,

and / or reacting flow



Effect of Reynolds Number

Temperature (K)
2700

2580

2460 e ST S T

2340 DD 0.1 0.2 0.3 0.4
2220
2100 x (m)
1980
|  Inlet Reynolds number = 500
1620

1500 e 6% increase in amount of fuel burned due to increased residence
1380 .
1140
1020
1 900
780
660
540
420
300

* Inlet Reynolds number = 2000
 Flame becomes unsteady

* 91% increase in amount of fuel burned due to turbulent mixing



Effect of Injection Configuration
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* Inlet Reynolds number = 1000 with downstream injection

* 30% decrease in amount of fuel burned

- Cold fuel
ICIJ = 1.-0.

* Inlet Reynolds number = 1000 with extra air injection into cavity
e Second flame produced

e 9% increase in amount of fuel burned




OpenFOAM

Open source C++ libraries for CFD

Top-level code is a direct representation of the equations.
Continuum formulation is input without stating difference
form.

o (pU
(; )+V‘(PUU)—V‘(ﬂVU)=—VP becomes:

solve ( fvm::ddt(rho, U) + fvm::div(phi, U) -

fvm: - laplacitan(mu, U) == - fvc::grad(p) );
Uses reactingFoam solver with one-step reaction:
C,H,; +11(0, +3.76N, ) > 7CO, +8H,0+41.36N,

Westbrook-Dryer chemical kinetics rate:
- a+byy ayyb—E, /R,T



Burning Efficiency
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where M. is the fuel mass flow rate into or out of the system
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Mixedness

(Ye = Yeun ) (Yn = Yoim )

m2

Mixedness is defined locally as: M =1+

Y.

Yo +Yy

y; is a modified mass fraction: Yi =

Y = mass fraction of carbon atoms
Y = mass fraction of nitrogen atoms

YetYn=1
Yi.m 1S the perfectly mixed modified mass fraction of element |

m is used to enforce a mixedness of zero if completely unmixed for
either Y, or Y. approaching zero:

, Yo <Ye o
m = Ye,m C o
yN,m’ YC >YC,m



Injection Configurations

. Vitiated air in channel (50% combustion
products)

. 25% overall equivalence ratio
- 3 configurations with additional air injection

Hot Air

Cold Fuel

[

Cold Air

[——————

Cold Fuel

|

(a) Reinforcing Cold Al

Hot Air

Celd Air (c) Parallel

Cold Fuel

(b) Disrupting



Comparison of 2D Injection Configurations

. 2:1 aspect ratio cavity at Re = 10000

. Parallel injection has highest burning efficiency in 2D
representation

. Efficiency not converged after 0.2s or 12 channel residence times

Reinforcing Injection
1 . Dismupting Injection
| Parallel Injection

! e
| s "'___L‘--—___-\__""_k R

Combustion efficiency

Combustion efficiency for different 2D injection configurations



2D Reacting with Reinforcing Injection

. Lowest burning efficiency
. Large vortices are nearly stationary
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2D Reacting with Disrupting Injection

- Medium burning efficiency
. Large vortices are nearly stationary
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2D Reacting with Parallel Injection

- Highest burning efficiency

. Much

greater vortex interaction
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3D Mesh

Top of Cavity
Jet Symmetry Plane
Symmetry planes
used for efficient -
calculations / |
| Off-jet

Models periodic \ e A
array of injectors TN '

Fuel / Air Injection Ports#
Jet size increased ‘
for greater mesh ! i
resolution \




3D Reacting with Disrupting Injection

 Slices through cavity at Re = 10000
— Mixedness contours and velocity vectors shown
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3D Reacting with Disrupting Injection

 Slices along cavity width at Re = 10000
— Mixedness contours and velocity vectors shown
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3D Reacting with Reinforcing Injection

 Slices through cavity at Re = 10000
— Mixedness contours and velocity vectors shown
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0.005

3D Reacting with Reinforcing Injection

 Slices along cavity width at Re = 10000
— Mixedness contours and velocity vectors shown
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Conclusions

2D results show:
Higher efficiency for parallel injection than for reinforcing or disrupting

Reinforcing and disrupting injection configurations create almost
stationary vortices

Parallel injection significantly increases vortex interaction

3D results show:
3D effects are significant

Reinforcing injection causes higher velocities in the cavity than
disrupting injection

Disrupting injection creates a well-defined area of very high mixedness

Reinforcing injection creates a larger zone of relatively high mixedness



Future work

Work already begun:
Improved 3D mesh

Curving channels
Converging channels

Possible future improvements:
Liquid fuels

Turbulence modeling for higher Reynolds
numbers



Thank You!
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