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Computational Challenges
with Spray Combustion Flows

Combustor size -- 10 - 100 cm

Computational mesh size -- 1—10 mm

Droplet size -- 10—100 microns

Droplet spacing -- 100—1000 microns

Full resolution is not feasible; sub-grid models are required.
Often vaporization is slow compared to other processes and
rate controlling; so, accurate sub-grid models are required.

Even when vaporization is not slow compared to other
processes, the droplet trajectory and vaporization rate controls
the mixture ratio distribution in the combustor. So, again,
accurate modelling is vital.
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SPHERICALLY SYMMETRIC
VAPORIZATION MODEL

Gas-Phase Equations:
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Liquid-Phase Equations:




Non-dimensional
Parameters and
Vaporization Rate
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Transient Liquid Temperature
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— — QUASI-STEADY LIQUID THERMAL LAYER
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Hexane Droplet in Air

Surface and Center Droplet Temperatures

Temperature Profiles in the Droplet
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- Species Mass Fractions

Hexane/Air
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LOX Droplet in Hydrogen

o Surface and Center Droplet Temperatures
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Gas-Phase Equations:
L®[p] =

L°[pY]] = V.(oDVY)) + Sy,
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Liquid-Phase Equations:
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Internal circulation of the
liquid is important: convection.

LIQUID-GAS
INTERFACE LIQUID STREAMLINE

SPHERICAL
VORTEX

INTERNAL WAKE

GAS BOUNDARY LAYER

LIQUID
BOUNDARY LAYER

LIQUID-PHASE STREAM FUNCTION

q Contour Interval: 1.16E-05 Min: 0.00E+00 Max: 1.75E-04

|
-0.6 .
Time = 25.00 ,Instantaneous Reynolds Number = 23.88

LIQUID-PHASE ISOTHERMS

Contour Interval: 5.72E+00 Min: 3.00E+02 Max: 3.86E+02

-1.0
Time = 0.50 , Instantaneous Reynolds Number = 96.45
(a)

LIQUID-PHASE ISOTHERMS

0 Contour Interval: 8.63E+00 Min: 3.26E+02 Max: 4.56E+02

-1.0 A 1.
Time = 5.00 , Instantaneous Reynolds Number = 76.06

(b)
LIQUID-PHASE ISOTHERMS

Contour Interval: 3.45E-01 Min: 4.69E+02 Max: 4.74E+02

-0.6 0.0 0.6
Time = 25.00 , Instantaneous Reynolds Number = 23.88

(c)



“Rapid Mixing” does not produce a
uniform temperature. However,

characteristic liguid heating length
and time are reduced considerably.
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Abramzon-
Sirignano
Convective
Droplet

Heating and
Vaporization
Model:

Gas Film Model
and Effective
Liquid Diffusivity

Gas Film Model

Hlog(l + Bm) [ Lk Prl/3Rel/?]

log(l + Bu) [ Lk Scl/3Rel’?]
B 2 F(Bum) |’
AR [ kE Prl/ E’*Re”E]

dr——log(l + By |l + =
s og(l+ By)|1+ 5 B

k Sc!/3Rel/?
1 4+ —

3 " F(Br)
Note that when Pr = Sc¢, we have Bs = By. Otherwise,

AdrpDRlog(l + B {

|




Effective Diffusivity Model for Liquid Phase
Oleff = X, x = 1.86 + 0.86 tanh|2.225 log,(Pe; /30}].
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Reynolds number and Peclet number can become large.
This will tend to make stream surfaces closer to isotherms.

The characteristic length and characteristic time for
liquid-phase conduction are reduced significantly.
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Near-Critical and Transcritical Thermodynamic Behavior

Consider a droplet with an
initial sub-critical temperature
in an ambience that is
supercritical. Initially,
composition is discontinuous
across the interface as
described by phase equilibrium.
t; >t . >t;,. Withtime, droplet
radius decreases; the critical
temperature surface moves
towards the phase interface;
once those two surfaces merge,
phase distinction disappears.




At near-critical conditions, ambient gas components
can dissolve in the liquid. The liquid therefore is not a
pure substance.




Profiles for Oxygen Droplet in Hydrogen Gas

Droplet Gas Phase

r/R(t) (n.d.)




High-Pressure Phase Equilibrium

¢ Unsteady effects in the gas phase are
particularly significant for a LOX droplet
vaporizing in hydrogen and cannot
be neglected.

¢ The quasi-steady film theory must be corrected
to take unsteadiness into account.

¢ At near- and super-critical pressures,
gas solubility in the liquid must be considered.

¢ Under super-critical pressures, the droplet
surface temperature reaches the critical
mixture value.

¢ Supercritical combustion must be modeled
under such conditions.




Enthalpy of Vaporization of LOX in H,
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Molecular Dynamics calculations require only a description of the
attractive / repulsive forces between the molecules. No apriori
description of phase is required. However, only sub-micron-size
droplets can be analyzed due to computational limitations. (There
are more than a billion molecules in a cubic micron of water or oil.)

@ droplet molecule

@ vapor molecule
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Approaches to Spray Computations

 Two-continua models: the properties are an average over
a neighborhood so that both liquid and gas properties
exist at each point in a continuous fashion.

e Discrete-particle models: a Lagrangian approach is taken
for droplets and an Eulerian approach for the gas. The
Lagrangian equations are equivalent to a characteristics

method for the continuous droplet equation in the first
method.

* Probability density function: this can be useful when
resolution is desired to be smaller than droplet spacing
and a probabilistic behavior exists. For more coarse
resolution, the pdf is a distribution function.



Intersection of Two Moving

Clouds of Droplets

Negligible Collision Rate if:

Droplet Spacing »» > Droplet Size




Characteristic Lines and Eulerian-Lagrangian Method

Droplet Path or Characteristic

Eulerian Mesh Point




Ignition Problem:
droplets near a hot wall

Ignition delay can be minimized
depending on droplet size and
distance from hot wall.

d,, is a better average droplet

diameter than d,, for ignition
predictions; i.e., surface area is critical.

DECANE

dg =100,150, 200 um

Decane

DISTANCE FROM WALL (CM)



Counterflow Flames

Two diffusion flames can occur even if
droplets enter only from one side.
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Droplet Streams interacting with Vortex
Structures in Mixing Layer

Droplet number density
variation is affected by
strain of vortex field.

t= 5.00E-02

Larger droplets have
greater inertia.




3D mixing-layer solutions for
bubble-laden flows

C/C_, Re=400, ©,=0.05 (1-way, y=2.67)

20 60




Turbulent Domains for Particle-laden Flows
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3D Large-Eddy Simulation
Vorticity and Droplet Position

Low swirl rate High swirl rate
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