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DRIVING MECHANISMS FOR COMBUSTION INSTABILITY

William A. Sirignano
Department of Mechanical and Aerospace Engineering, University of California,
Irvine, California, USA

The processes affecting the nonlinear acoustic stability of a combustor are examined in an
overview fashion. Emphasis is placed on liquid-propellant rocket motors but other systems
are briefly mentioned and some broadly applied principles and observations are discussed.
A nonlinear wave equation is developed for a two-phase mixture and the roles of various
terms in the equations are discussed. A review is made of various combustion processes, their
associated characteristic times, and the impacts on stability in certain cases. Many relevant
scales for length and time are identified. Special issues for supercritical and transcritical
combustion are discussed. Bistable operational domains are shown to be present in some
systems, making nonlinear triggering of an instability a possibility. Relations between the
natural frequency of oscillation for the combustion chamber and the characteristic combus-
tion times are identified with regard to impact on the combustor stability. The amplitude of
the limit cycle and the transient time for limit-cycle development are related to the mean-flow
Mach number. The role of shock-wave dissipation in amplitude determination is described.

Keywords: Combustion instability; Continuous combustion; Unsteady combustion

1. INTRODUCTION

Combustion instability in rocket engines and other continuous-combustion engines
has provided a major design challenge for the engineer and a substantial intellectual chal-
lenge to the researcher. It demands an understanding of unsteady combustion processes and
nonlinear acoustical resonance. The researcher must address the intertwined, multidisci-
plinary issues of combustion, transport, fluid dynamics, acoustics, and nonlinear dynamics.
While many examples in this discussion will be related to liquid-propellant rocket engines,
not all are. More importantly, two points must be understood: (i) all acoustic oscillations in
partially confined gaseous chambers relate to each other regardless of shape or application;
and (ii) combustion processes, such as phase change, mixing, and oxidation, regardless
of the particular combustion chamber in which they occur are related. Therefore, many
principles and observations will have value for a range of combustor applications.
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There are two general types of acoustical combustion instability: “driven” instability
and “self-excited” instability as noted by Culick (2006). He describes evidence in some
solid-propellant rockets of the former (driven) type where vortex shedding (a more orga-
nized noise) causes kinematic waves (i.e., waves carried with the moving gas) of vorticity
or entropy to travel to some point where an acoustical reflection occurs. The reflected
wave causes more vortex shedding after traveling back and a cyclic character results. These
driven types do not rely on acoustical chamber resonance and acoustical waves traveling
upstream are the only type of consequence with kinematic waves only traveling downstream
by the kinematic definition. They are much smaller in amplitude since the energy level is
limited by the driving energy. This type of instability has also been observed in ramjet
combustors but never in liquid rockets. They will not be addressed here. Self-excited insta-
bilities are the primary type relevant to liquid-propellant rockets but also appear elsewhere.
These instabilities involve an acoustical resonance, which relies on a coupling between the
acoustical waves and the combustion process where energy is added in a cyclic fashion to
the acoustically resonant gas in the combustion chamber.

It has been well established based on experiment and development-test experience
(Harrje and Reardon, 1972) that three types of stability zones can be found: unconditionally
stable operation where the amplitude of any disturbance (large or small) decays in time
to the steady-state operation; unconditionally unstable operation where the amplitude of
any disturbance (large or small) grows in time to a limit-cycle oscillation; and bistable
operation where growth to a limit-cycle occurs for disturbance amplitudes above a specific
threshold but decay to the steady state results for disturbances of a magnitude below the
threshold.

The particular resonant mode is a characteristic of the particular combustion cham-
ber and convergent portion of the nozzle. Any partially confined gas volume has an infinity
of different theoretically possible resonant acoustic modes. These resonant mode oscil-
lations and their frequencies are predictable by linear theory. They depend on chamber
shape, boundary conditions for the chamber flow, and the field values for speed-of-sound
and velocity vector through the chamber gas. The lowest frequency mode is identified as
the fundamental mode while the other modes are overtones. Only in special situations are
the overtones also harmonics of the fundamental mode; that is, their frequencies are inte-
ger multiples of the fundamental frequency. Generally, the harmonics are not predicted
by linear theory to occur in isolated fashion. It is well known from the theory of nonlin-
ear oscillations that, for many mechanical systems, nonlinear resonance can involve any
of several developments: the generation of harmonics superimposed on the basic resonant
mode; the simultaneous excitement of other resonant modes by transfer of energy among
modes; and the transfer of energy to a subharmonic mode whose frequency is lower than the
basic mode and related arithmetically to two or more resonant modes (e.g., the difference
between two resonant frequencies).

These self-excited instabilities are not limited in amplitude by the energy of the ini-
tiation action; they find the energy within their own “macro” (i.e., chamber or acoustic
wavelength scale) behavior as the oscillations grows and develops. So, the initiation can be
micro-level (at least one order of magnitude smaller than chamber scale) but the instability
becomes macro-level. These instabilities include those linear unstable (i.e., unconditionally
unstable) situations where normal low-level engine noise is sufficient to initiate the insta-
bility oscillation and those triggered (i.e., conditionally stable or equivalently conditionally
unstable) instabilities, which require a larger initial disturbance to initiate the nonlinear
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oscillation. Physically, the rogue disturbance is some deviant behavior in the operation that
has uncertainty with regard to location in the physical coordinates, duration, and magnitude.
The deviant behavior “jolts” the steady-state behavior. Sometimes, there is a recovery and
a return to the steady-state but, at other times, the development of the oscillation occurs
with a growing of the oscillation amplitude until the limit cycle is reached. The needed jolt
to initiate instability can sometimes come during a rapid start of the engine so that steady
state never appears.

With the self-excited instability, a gradual and continuous change in some direction
of operating conditions (e.g., mixture ratio or mass flow) or design (e.g., nozzle throat
area or injector detail) could cause a variation through the several instability domains:
unconditionally stable, conditionally stable, unconditionally unstable, and perhaps back
to conditionally stable and unconditionally stable. Moderate (normal “steady-state” rum-
bling) noise might initiate the linear instability in certain operational domains and large
disruptive noise (e.g., an experimental bomb, a large operational change, a large but tempo-
rary rogue injector blockage or injector exit vortex) might trigger the nonlinear instability
in some other operational domain. In those cases, noise or disruptions are typically only
initiators with modest energy levels compared to the energy of the ultimate oscillation. The
initiators can be turned off or disappear naturally once the instability starts and the oscil-
lation will remain and grow. That is, it is driven by a coupling between combustion and
acoustics. The stochastic nature pertains only to the initiation mechanism, which moves
the dynamics from the steady-state (or nonoscillatory starting transient) to a stable limit
cycle (the periodic or chaotic nonlinear oscillation). The limit cycles and the equilibrium
points are neither stochastic in nature nor stochastic with regard to the ultimate driving
mechanism.

In order to drive a combustion instability, certain relations between the resonant fre-
quency and the characteristic times associated with the combustion process are required.
The limit-cycle amplitude of the oscillation will also be related to certain parame-
ters describing the combustion process. In situations where triggering of an oscillation
occurs, the threshold amplitude (or unstable-limit-cycle amplitude) will be related to cer-
tain combustion parameters. Certain damping mechanisms will also affect the behavior.
An overview of these issues will be presented here. Examples will be chosen that are most
familiar to the author. It is not claimed that a thorough review of the literature is being
offered; rather, the focus will be on the underlying concepts. Obviously, the work of the
author will find preference among the examples. For more detailed reviews of combustion
instability, see Crocco and Cheng (1956), Harrje and Reardon (1972), Yang and Anderson
(1995), and Culick (2006).

In the next section, we formulate the governing differential equations and bound-
ary conditions in a general form for a two-phase flow undergoing chemical reaction and
exchanges of mass, momentum, and energy between the phases. The third section devel-
ops those equations into a useful form for studying wave oscillations in a combustion
chamber/convergent-nozzle configuration. The characteristic times associated with the
injection and combustion processes and their connection with unstable oscillations are
discussed in the fourth section. This subject relates to sub-grid models in large-eddy sim-
ulations (LES) for combustion chambers. In the fifth section, the factors determining the
threshold for triggering and the limit-cycle amplitude are discussed. Then, a summary of
key conclusions is given in the last section.
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2. TWO-CONTINUA, TWO-PHASE FORMULATION

In this section, we will present the two-continua system of equations in the forms
that are commonly used. It is noteworthy (Sirignano, 2005b, 2005a, 2010) that this general
approach was first developed for specific application to longitudinal-mode liquid-propellant
rocket engine combustion instability in the PhD dissertation of S.-I. Cheng working with L.
Crocco (Crocco and Cheng, 1953, 1956). The basic concept developed there in the 1950s
of two superimposed continuous fields has since been extended to dusty gases, bubbly
flows, and flows through porous material. Properties are averaged over a sufficiently large
neighborhood of any point that both carrier-fluid (continuous-phase) and discrete-phase
properties exist at any point. Here, we use a three-dimensional (3D) version of the theory.
This formulation is designed to address a common situation in a combustor where the gas
is laden with droplets or particles, e.g., a spray combustion situation. In particular, averag-
ing of properties is done over a neighborhood scale larger than droplet size or distance to
nearest droplets. Exchanges of mass, momentum, and energy occur between the phases and
must be tracked. The higher order quantities, which relate to differences between products
(and a ratio) of averages and averages of products (and a ratio), are neglected in the follow-
ing formulation. The bar symbol is used over the density in order to distinguish between
bulk density and the mass per unit volume of the mixture. Details are provided by Sirignano
(2010).

In the following discussion, we examine the various conservation principles for the
gas and liquid phases. The hyperbolic nature of the liquid-phase equations and the conse-
quences are examined. The interactions between the two phases will introduce many new
length scales and time scales that can be consequential. These scales will be surveyed in
section 4.

2.1. Mass Conservation

We consider the various forms of mass continuity or conservation equations for the
gas and liquid phases. Mass conservation of individual chemical species or of individual
classes of liquid droplets will also be considered. The conservation of droplet numbers will
be explored. The gas-phase mass-conservation equation is:

∂ρ̄

∂t
+ ∂

∂xj

(
ρ̄uj
) = Ṁ (1)

The term on the right side does not appear if no mass is exchanged between the phases.
The liquid-phase mass-conservation equation is:

∂ρ̄l

∂t
+ ∂

∂xj

(
ρ̄lul,j

) = −Ṁ (2)

where Ṁ is the mass vaporization rate per unit volume. Models for evaluating the vaporiza-
tion rate Ṁ are required. As a result of vaporization, mass is not conserved for each phase
but the mass of the mixture is conserved.

For a constant bulk liquid density ρl, ρ̄l = (1 − θ) ρl, where θ is the local volume
fraction occupied by gas.
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Consider now the gas-phase species-mass conservation. The integer index m repre-
sents the particular species. The mass fraction Ym is described by:

∂

∂t
(ρ̄Ym) + ∂

∂xj

(
ρ̄ujYm

)− ∂

∂xj

(
ρ̄D

∂Ym

∂xj

)
= Ṁm + ρ̄ẇm (3)

where

Ṁ =
∑

m

Ṁm =
∑

m

εmṀ
∑

m

ẇm = 0

The mass diffusivity is assumed above to be the same for all species. Other options can
be considered (Sirignano, 2010). εm is the fractional vaporization rate for species m and,
for a quasi-steady gas phase, becomes a species mass-flux fraction. Obviously,

∑
m εm = 1.

Summation over all components in Eq. (3) yields the continuity equation (1). Therefore,
if we have N different species, only N − 1 species-conservation equations need be solved
together with Eq. (1).

2.2. Momentum Conservation

Now, let us consider the gas-phase momentum equation constructed in a simple form
with neglect of body forces:

∂

∂t
(ρ̄ui) + ∂

∂xj

(
ρ̄ujui

)+ θ
∂ρ

∂xi
− θ

∂τij

∂xj
= Ṁul,i − FDi (4)

where

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂ui

∂xj

)

Equation (4) includes momentum sources and sinks due to droplet-vapor mass sources,
reaction to droplet drag, and body forces on the gas. The drag and lift forces FDi in Eq. (4)
can be related to the relative droplet–gas velocity and the droplet radius through the use
of drag and lift coefficients. The equations are written for a laminar flow but turbulence
modeling can be included in various ways. The simplest way would be to use an eddy
viscosity μt in place of μ above.

The gas-phase momentum equation may be rewritten in a form where all effects of
viscosity and mass and momentum exchanges appear as terms on the right side of the
equation included together as a term İi giving impulse per unit volume:

∂

∂t
(ρ̄ui) + ∂

∂xj

(
ρ̄ujui

)+ ∂p

∂xi
= İi (5)

İi ≡ (1 − θ)
∂p

∂xi
+ θ

∂τij

∂xj
+ Ṁul,i − FDi (6)

The liquid-phase momentum equation can be written as:
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∂

∂t

(
ρ̄lul,i

)+ ∂

∂xj

(
ρ̄lul,jul,i

) = −Ṁul,i + FDi + ρ (1 − θ)

[
∂ui

∂t
+ uj

∂ui

∂xj

]
(7)

The last term in Eq. (7) implies that the acceleration that would have been given to the gas
(if it were to exist in the fractional volume occupied by liquid), because of the pressure
and the viscous stresses transferred from the neighboring gas, is transmitted as a force on
the droplets. The neglected additions due to droplet interactions to the last term in Eq. (7)
can be shown to be of the order of (1 − θ)2. Note that the reaction to this force is already
implied in the gas momentum equation (5) and need not be explicitly represented.

2.3. Energy Conservation

The perfect gas law is given as:

θp = ρ̄RT ρ̄e = ρ̄h − θp (8)

The analysis could utilize a cubic form of the gas law that would apply better at high
pressures. However, it will not change our major conclusions.

Then, the energy equation can be written as:

∂

∂t
(ρ̄h) + ∂

∂xj

(
ρ̄ujh

)− ∂

∂xj

(
λ

∂T

∂xj

)
− ∂

∂xj

(
ρ̄D

∑
m

hm
∂Ym

∂xj

)

= θ
dp

dt
+ 	 + ρ̄

∑
m

ẇmQm − Ṁ Leff + Ṁ hs

(9)

Leff is defined as the ratio of the conductive heat flux from gas to liquid surface to the
vaporization mass flux. For the case where no heat passes to liquid interior (constant-liquid-
temperature case), Leff = L, the latent heat of vaporization. Note that,

h =
∫ T

Tref

cpdT ′ =
∫ T

Tref

[∑
m

Ymcpm
(
T ′)]dT ′

and

dp

dt
≡ ∂p

∂t
+ uj

∂p

∂xj
(10)

For low Mach number, the viscous dissipation 	 can be neglected.
We reorganize the energy equation (9) to place the viscous term, terms related to

conductive and mass transport of energy, and terms related to energy exchange between the
phases into one source-sink term identified as ε̇. Also, we define the energy conversion rate
term to be:

E ≡ ρ̄
∑

m

ẇmQm (11)
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∂

∂t
(ρ̄h) + ∂

∂xj

(
ρ̄ujh

)− ∂p

∂t
− uj

∂p

∂xj
− E = ε̇

ε̇ ≡ (θ − 1)
dp

dt
+ 	 + ∂

∂xj

(
λ

∂T

∂xj

)
+ ∂

∂xj

(
ρ̄D

∑
m

hm
∂Ym

∂xj

)
− Ṁ Leff + Ṁ hs

(12)

The liquid-phase temperature will generally vary spatially and temporally within the
liquid droplet. A Navier–Stokes solver or some approximate algorithms can be used to
determine the temperature field in the droplet, including the surface temperature. In the
special case of a uniform but time-varying liquid temperature in the droplet, an equation for
the thermal energy contained in the droplet can be useful. If el is the liquid internal energy
per unit mass, then ρ̄el is the liquid internal energy per unit volume of mixture. In the case
in which a spacial variation of temperature occurs in the droplet, el could be considered as
the average over the droplet. However, an equation for el would not be so useful here since
the difference between the average value and the surface value is not specified but yet the
results are most sensitive to the surface temperature. Viscous dissipation can be neglected
in the liquid-phase energy equations. The liquid energy equation can be written as:

∂

∂t
[ρ̄lel] + ∂

∂xj

[
ρ̄lul,jel

] = Ṁ
[
Leff − L − els

]
(13)

3. WAVE DYNAMICS

Equations (1), (5), and (12) can be re-stated together with Eq. (8) to form the basis for
the development of a wave equation. The superscript bar is omitted here for convenience in
further analysis.

∂ρ

∂t
+ ∂

∂xj

(
ρuj
) = Ṁ

∂

∂t
(ρui) + ∂

∂xj

(
ρujui

)+ ∂p

∂xi
= İi

p = ρRT
∂

∂t
(ρh) + ∂

∂xj

(
ρujh

)− ∂p

∂xj
− E = ε̇

(14)

The development of a wave equation begins by subtracting the divergence of the
momentum equation from the time derivative of the continuity equation above. This yields

∂2ρ

∂t2
− ∂2p

∂xj∂xj
= ∂2

(
ρuiuj

)
∂xi∂xj

+ ∂Ṁ

∂t
− ∂ İj

∂xj
(15)

Neglect of the variation of the gas constant R due to the multicomponent nature of
the fluid, assumption of constant specific heats cp and cv with h = cpT and γ = cp/cv, and
differentiation of the perfect gas equation gives

∂ρ

∂t
= γ

a2

∂p

∂t
− (γ − 1) ρ

a2

∂h

∂t
(16)

Use of the combined First and Second Laws of Thermodynamics to write:
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ρ
∂h

∂xi
= ∂p

∂xi
+ ρT

∂s

∂xi

and substitution for ∂h/∂xi in the energy equation (12) using the continuity equation (1)
leads to

ρ
∂h

∂t
= ∂p

∂t
− ρujT

∂s

∂xj
+ E + ε̇ − hṀ (17)

Combine Eqs. (16) and (17) to eliminate enthalpy and differentiate again with
respect to time to obtain a second derivative of density with respect to time. Eliminate
by substitution that second derivative from Eq. (15). Note that, for a perfect gas,
(γ − 1) h = a2.

∂2p

∂t2
− a2 ∂2p

∂xj∂xj
= ∂ρ

∂t

∂a2

∂t
+ a2 ∂2

(
ρujui

)
∂xi∂xj

+ (γ − 1)
∂E

∂t
+ S3 (18)

where the 3D source term S3 is given by

S3 ≡ (γ − 1)

[
∂ε̇

∂t
− Ṁ

∂h

∂t
− ∂

(
ρTuj∂s/∂xj

)
∂t

]
− a2 ∂ İj

∂xj
(19)

This equation may be solved simultaneously with Eq. (5) to solve for pressure p and veloc-
ity components ui. Other inputs are needed for coupling with liquid phase behavior and
energy release from combustion processes.

The left-hand side of Eq. (18) represents the wave operator in three dimensions.
A mild nonlinearity appears through the coefficient a2. The first and second terms on the
right-hand side are strongly nonlinear terms that are conservative and do not drive or damp
the oscillation. However, they will affect the wave shape. The third and fourth terms on the
right represent the influence of the chemical energy conversion rate E, viscous and transport
effects embedded in the rates İi and ε̇, impact of volume fraction θ , and exchanges of mass,
momentum, and energy between the phases embedded in the rates Ṁ, İi, and ε̇, respec-
tively. These terms can be strong drivers or strong dampers of the nonlinear oscillation;
consequently, they will be discussed further below.

Entropy gradients in the flow can be neglected for the purpose of developing a model
equation. Thus, one term in the definition given by Eq. (19) can be neglected. One can
assume that fine-scale mixing eliminates these entropy gradients. The length scales for
transverse gradients of entropy, other scalar properties and vorticity are of the order of
the injector diameter, the order of spacing between adjacent injectors, or smaller. These
dimensions are smaller than the common wavelengths of oscillations in the combustion
chamber. Also, these properties advect and diffuse but are not propagated by acoustic
waves. Turbulent mixing will uniformize these quantities rapidly while acoustical pressure
and velocity oscillations will not be vitiated by turbulence. These comments would not per-
tain to entropy generation if the acoustic waves form shock waves or detonations, which are
possibilities for longitudinal oscillations and, in an annular chamber, for transverse oscil-
lations. In that case, the entropy generation (i.e., shock dissipation) can be significant in
determining the limit-cycle oscillation amplitude.
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In evaluating driving and damping mechanisms for the wave equation (18), realize
that a hypothetical first-time-derivative-of-pressure term appearing on the right side with a
positive coefficient would be a driving term through which energy is added to the oscilla-
tion. With a negative coefficient on the right side, the term would provide damping for the
oscillations. Consequently, the question is whether E, Ṁ, and ε̇ are in-phase or out-of-phase
with the oscillating pressure. Thus, if the rate at which energy is added locally via oxidation
or transport is in-phase (out-of-phase) with pressure, driving (damping) of the oscillation is
occurring at that location. If the divergence of the impulse Ii is in-phase (out-of-phase) with
the pressure first time derivative, damping (driving) of the oscillation appears. “In-phase”
or “out-of-phase” each implies a band so that phase angle can vary by ±90◦.

Equation (18) is coupled with the velocity; thus, it should be solved simultaneously
with Eq. (5). The system has higher derivatives appearing through the viscous and transport
terms, which are included in source terms as presented. These higher derivatives create an
elliptical system of equations if they are important terms. Typically, however, transport and
viscosity manifest their impacts on a much smaller length scale than the acoustic wave-
length. Therefore, the phenomenon remains hyperbolic rather than elliptical for practical
purposes. One could set the viscous and transport terms to zero, yielding the following
definitions of the inviscid sources εI and İi,I :

ε̇I ≡ (θ − 1)
dp

dt
−
∑

k

n(k)ṁ(k)L(k)
eff +

∑
k

n(k)ṁ(k)h(k)
s

İi,I ≡ (1 − θ)
∂p

∂xi
+
∑

k

n(k)ṁ(k)u(k)
l,i − FDi

(20)

Equation (18) will still be coupled with Eq. (5) to solve for velocity and pressure;
however, for consistency, the viscous terms in the momentum equation should be neglected
to solve for the wave behavior on the scale of the acoustic wavelength (or equivalently
on the scale of the combustion chamber size). The aerodynamic force per volume for the
condensed phase FDi includes both lift and drag; exceptions are made to retain this term
in the inviscid limit because it affects droplet motion and position. Equation (18) now is
strictly in hyperbolic form. The input for E can involve an analysis on a finer length scale,
accounting for transport and viscous terms. For a single-phase flow, the system is much
simpler with the source terms Ṁ, İi,I , and ε̇I becoming identically zero. Nevertheless, the
terms giving the highest derivatives remain the same for both the single-phase equation and
the two-phase equation, reflecting the similarity of the wave propagation in both cases.

In the above formulation of the equations for the wave dynamics, selected consider-
ation of turbulence has been advocated. Under the assumption that turbulent length scales
are small compared to acoustical wavelengths, the affect on the dynamics is neglected.
For the shorter kinematic (i.e., entropy, temperature, and vorticity) waves, turbulence is
assumed to help uniformize those quantities and reduce the importance of those waves.
For the many flames that have shorter characteristic lengths, the impact of turbulence can
be important and must be evaluated. For example, consider a combustion chamber with
many injectors, each of a size scale that is much smaller than the chamber size. If mixing
is fast and chemical kinetics is controlling, the effect of the small-scale turbulence is not
too important. However, if mixing is rate controlling, the small scales of turbulence can be
very important.
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3.1. Models for Source Terms

There is a need to close the conservation equations by describing the various source
terms that appear: ω̇m, Ṁ, İi, and ε̇. The chemical kinetic rates in a high-temperature, high-
pressure rocket environment are commonly much faster than mixing and vaporization rates.
Thus, great accuracy in their determination is generally not required because they are not
rate controlling and do not significantly affect time lags. For that reason, a one-step chem-
ical reaction model often suffices. Westbrook and Dryer (1984) provides useful one-step
models for ω̇m in the case of hydrocarbon oxidation. A typical rate law for burning a
hydrocarbon CxHy would be of the form ω̇CxHy = Aρa+b−1Ya

CxHy
Yb

O2
exp

[−EA/ (RuT)
]
.

For the modeling of Ṁ for spray flows, knowledge of the droplet size distribution
or average droplet size produced in the atomization process is needed; the vaporization
rate and lifetime of the individual droplet will depend on its initial size and Ṁ at �x, t
will depend on the vaporization rates of the droplets in that neighborhood at that instant.
Then, a vaporization model is needed for the slower vaporizing propellant, which is the
hydrocarbon fuel in liquid-hydrocarbon/oxygen engines but becomes the liquid oxygen
with hydrogen/oxygen engines. Pioneering works on the vaporization and burning fuel
droplets are described by Godsave (1953), Spalding (1953), and Williams (1958, 1959,
1960, 1985). Generally, the early theory focused on the burning of isolated droplets with
spherically symmetric, quasi-steady gas phase and steady liquid temperature. More recent
models add the effects of transient liquid-phase heat transfer, which is typically the slowest
process in droplet heating, and vaporization in high temperature environments (Sirignano,
2010), internal liquid circulation and convective liquid heating, and gas-film convective heat
transfer. The most-often-used model having those attributes was developed by Abramzon
and Sirignano (1989). An extension of that model to address multi-component fuels was
developed by Continillo and Sirignano (1988). It is desirable to have extensions that would
account for interactions of the droplets with neighboring droplets and with the smaller tur-
bulent eddies. We know that these interactions modify Nusselt number, Sherwood number,
and drag coefficient from the values for isolated droplets. Consequently, vaporization rates
and drag forces are modified. Sirignano (2014) reviews recent progress in those directions.
Related issues will be discussed in the next section.

3.2. Boundary Conditions

Wall conditions. Equation (4) shows that the total normal stress is zero at a wall
where the normal velocity of each phase must go to zero. For the inviscid case, this means
both normal velocity and normal pressure gradient are zero at the wall; tangential velocity
may be non-zero. For the viscous case, normal velocity and normal pressure gradient can
be set to zero also because normal viscous stress should be negligible; tangential velocity
is also zero. If a wall has an acoustic liner, the admittance for that liner may be used as a
boundary condition (Sirignano, 1972; Tang and Sirignano, 1973; Tang et al., 1973).

Injector or burning surface. For a liquid-propellant rocket engine, portions of
an injector face will essentially be a wall with wall-type boundary conditions on the nor-
mal vectors. Other portions will be orifice exits where jet flows occur. Here, traditional
inflow conditions can be placed on mass flow (or velocity), temperature, and composition.
If mass inflow is controlled, the boundary conditions can be placed on mass flux with den-
sity and velocity allowed to adjust with pressure oscillation. If the injector experiences
internal oscillations, a coupled analysis of injector and chamber flow might be needed with
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boundary conditions set upstream at a plenum (Popov et al., 2014; Sirignano and Popov,
2013). At the gasifying surface of a solid propellant in a solid-propellant or hybrid rocket
engine, the mass flux per unit area of the propellant (equal to the product of the regression
rate and solid density) must be analyzed by coupling the gas-phase mixing and reaction
layer with the solid-phase thermal layer (Krier et al., 1968; Sirignano, 1968).

Choked nozzle flow. The nozzle provides an important damping mechanism and
modifier of natural frequencies. The nozzle has an acoustical impact between those of
the open-end chamber and the closed-end chamber. Like the open-end, acoustical energy
continually flows out. On the other hand, the convergent walls provide some reflection of
waves. The modifications of effective chamber size by the addition of the convergent noz-
zle affects the natural resonant frequencies as well, generally reducing the magnitude as the
nozzle volume increases.

Early work on the boundary condition at the entrance to the convergent choked nozzle
for linear longitudinal-mode combustion-chamber oscillations was done by Tsien (1952)
and Crocco and Cheng (1953, 1956). Extensions to 3D oscillations and nonlinear the-
ory was performed by Crocco and co-workers (Crocco and Sirignano, 1967, 1966; Zinn
and Crocco, 1968). The linear theory used admittance coefficients, which related pressure
oscillations in the nozzle entrance plane to oscillations of velocity components and entropy
(or temperature) at the same location. These coefficients were obtained by integration by
Crocco and Sirignano (1967) of the equations governing the oscillations in the convergent
portion of the nozzle. For a choked nozzle, acoustic signals will not propagate upstream
from the throat; hence, the behavior of the flow in the divergent portion of the nozzle has
no consequence on the chamber instability. In the limit of a short nozzle, the wavelength
of the oscillation becomes much longer than the convergent length; thus, a quasi-steady
nozzle flow can be assumed. For longitudinal oscillations, that means the chamber length is
much greater than the convergent nozzle length and the Mach number at the nozzle entrance
remains constant under oscillation although pressure and velocity fluctuate.

The short-nozzle boundary assumption applies for transverse-mode and 3D oscilla-
tions if the length of the convergent portion of the nozzle is of negligible length compared
to both the chamber length and circumference and if the exit plane has many small closely-
spaced equally sized and shaped nozzle holes so that the angle of convergence is not
too large. Then, the relationship developed by Crocco and Sirignano (1966) applies. For
isentropic nozzle flow of a perfect gas with constant specific heats,

1

Mx

[
1 + γ − 1

2

(
M2

x + M2
y

)](γ+1)2(γ−1)

=
(

γ + 1

2

)(γ+1)/2(γ−1) (Ac

At

)
(21)

where a is the speed of sound at the entrance to the nozzle capture zone and the two
components of Mach number at that entrance are Mx = u/a and My = v/a. Ac and At are
the nozzle flow capture area and throat area. The capture area is determined by follow-
ing streamlines upstream for a short distance from the nozzle hole. The nozzle holes are
considered to be sufficiently densely packed so that the nozzle entrance area and capture
area differ only slightly. Furthermore, distances are sufficiently smaller than wavelengths
so that quasi-steady flow is assumed and streamlines may be defined. For zero-valued
transverse-velocity component (i.e., longitudinal-mode oscillation or steady state), My = 0
and therefore Mx = u/a is constant, which provides a simple boundary condition. With a
transverse component to the oscillation, both Mx and My can oscillate. Therefore, Eq. (21)



DRIVING MECHANISMS FOR COMBUSTION INSTABILITY 173

relates the two velocity components u(t,L,Y) and v(t,L,y) with the thermodynamic vari-
able a(t,L,y) at the chamber exit. Another form of the same relation is informative and is
provided below:

γ 1/2

[
1 + [

(γ − 1) /2
] (

M2
x + M2

y

)
(γ + 1) /2

](γ+1)/[2(γ−1)]

= Ac

At
u (RTc)

−1/2 = ṁ (RTc)
1/2

Atpc
(22)

where ṁ, Pc, and Tc are the individual nozzle mass flux, capture-flow static pressure, and
capture-flow static temperature. Note that the quantity on the far right side of Eq. (22)
is constant for steady-state or longitudinal oscillations but pc, Tc, and ṁ may still oscil-
late there. Obviously, they can oscillate also for transverse modes where Mx and My also
oscillate.

Using perturbation theory, Zinn and Crocco (1968) extended the use of 3D nozzle
admittance coefficients to third order in a perturbation series of pressure amplitude.

4. MECHANISMS AND CHARACTERISTIC COMBUSTION TIMES

The combustion process generally responds to fluctuations and oscillations in density
and temperature (which relate to pressure) and velocity. Gasification rates, mixing rates, and
chemical rates can vary as these quantities fluctuate. Thereby, the rate E in Eq. (18) depends
upon the histories of the pressure p and other variables. Consequently, an oscillation in
E might lag the oscillation in p. The classical Rayleigh criterion for optimal driving of
the oscillation by the energy addition E is met when E and p are exactly in phase (or
equivalently when E lags p by a time equal to the period of oscillation multiplied by any
positive integer). Some reduced amount of driving occurs when E differs from one of the
optimal lag values by less than one-quarter of the time period. The oscillation is damped
when it lags by an amount that differs from every optimal value by more than one-quarter
of the time period. Substantial analysis is required to determine the time lag associated with
combustion under these oscillatory conditions.

Combustion can be viewed and well approximated as a sequence of processes for
the reactants with each process coming to completion for a given infinitesimal element of
mass before the next process: e.g., injection and atomization, vaporization, mixing, and
exothermic chemical reaction. The overall time duration τ for N sequential processes is
the sum of the time durations of all processes. The rate r of a process can be taken as the
reciprocal of its duration. Thereby, the reciprocal of the overall rate ro becomes the sum of
the reciprocal rates of the individual processes:

τ =
N∑

i=1

τi =
N∑

i=1

1

ri
= 1

ro
(23)

If one process i = ∗ becomes an order of magnitude larger in its duration than any
other, we may approximate ro = r∗; i.e., the slowest rate becomes controlling. Of course.
if the overall duration τ of the combustion process becomes significant in magnitude com-
pared to the period of oscillation, the combustion process is not quasi-steady and a history
(i.e., time-lag) effect exists. The rate E in Eq. (18) has units of energy per unit time per unit
volume and differs from the ri values; however, the rate E

(
t, −→x ) will depend on the values
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of ri over the duration of the combustion process prior to time t for the element of mass that
completes combustion at time t and point −→x .

Combustion processes introduce many length and time scales. Those length scales
generally are smaller than the acoustic wavelength and some of the flow structures. Some
of the combustion time scales can be of the order of a wave travel time or period of oscil-
lation. In the following subsections, the various descriptions of combustion processes are
discussed. The Sensitive-Time-Lag approach was the early attempt to bypass a detailed
description of combustion and is discussed first. The other subsections discuss specific
combustion processes and their possible impacts on combustion instability.

4.1. Sensitive Time-Lag Theory

During the 1950s, when our knowledge of unsteady combustion processes was rather
poor, Crocco and Cheng (1953) proposed the heuristic approach named the Sensitive Time-
Lag Theory. Previously, a constant time lag had been used to explain the delayed response
of injected liquid-propellant mass flux into a combustion chamber, which experienced a
varying chamber pressure. The new theory differed because the time lag itself varied under
oscillation of thermodynamic properties in the combustion chamber. In its first version, the
combustion process rate was related only to pressure p.

The theory assumed that the energy release rate E at time t required a certain history
prior to the instant of energy release at t; specifically, the pressure history had to satisfy
the condition that the integral

∫ t
t−τ (t) p

(
t′
)n

dt′ = C where n, τ , and C are, respectively,
the constant (positive) interaction index, the instantaneous value of the time lag, and a
constant independent of pressure. By a shortening (lengthening) of the time lag due to a
positive (negative) pressure fluctuation, the mass burning rate became instantaneously faster
(slower) than the injection rate of mass. The values of the interaction index and steady-
state time lag f were intended to be determined empirically from choice of propellants and
injector design.

Using perturbation theory, p = p̄ + p′, τ = τ̄ + τ ′ and E = Ē + E′ linear theory
shows that the time derivative of the time lag dτ/dt = dτ ′/dt = −n

[
p′(t) − p′(t − τ̄ )

]
.

Furthermore, it follows that:

∂E

∂t
= ∂E′

∂t
= −∂τ

∂t
= −∂τ ′

∂t
= n

[
p′(t) − p′(t − τ̄ )

]
(24)

This presentation is somewhat simplified by the assumption that the mass undergo-
ing the combustion process during the time lag does not change its position significantly
during that duration. For a more general analysis, see Crocco and Cheng (1956). It can be
seen that if the time lag τ̄ is the product of one-half the period of oscillation and an odd
positive integer, the energy rate E will be perfectly in phase with the pressure. If τ̄ differs
by less than a quarter of an oscillation period from one of those optimal magnitudes, an
in-phase component of E will still be present supporting the oscillation in accordance with
the Rayleigh criterion.

The theory met with some success in characterizing and predicting instability. For
the transverse (i.e., 3D oscillation modes), the rate of combustion and subsequent time lag
needed to be coupled with both pressure and gas velocity (Reardon et al., 1964). In the
transverse oscillation, velocity had a stronger effect on atomization, vaporization, and mix-
ing. The time-lag theory was extended to nonlinear analyses using a perturbation series
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in amplitude (Crocco and Mitchell, 1969; Mitchell et al., 1969; Sirignano, 1964; Zinn,
1968). Zinn and Powell (1971) later used the time-lag theory with the Galerkin method for
nonlinear oscillations.

The theory is strictly violated if, in order to match experimental data, τ̄ and/or n
must be considered as functions of the frequency of oscillation. This need to assume a
frequency dependence has happened in some situations. A more general way to view the
Sensitive Time-Lag Theory is as a two-parameter system where each of the parameters
n, τ̄ can be functions of propellent selection, injector design, and oscillation frequency.
Then, it becomes analogous to a gain-phase representation for the admittance E′/p′ as
a complex number. In fact, n and τ̄ can easily be related to gain, phase, and frequency.
Others later legitimately used gain and phase for liquid-rocket instability analysis (Culick,
2006). As this author knows from personal communications, Professor Crocco viewed the
Sensitive Time-Lag Theory (also known as the n, τ theory) as a heuristic attempt to ana-
lyze combustion instability until superior knowledge of unsteady combustion processes was
developed.

4.2. Premixed Combustible Gaseous Propellants or Rapidly Mixed

Propellants

In cases where the propellants are prevaporized and premixed before injection or
rapidly mixed upon injection, the duration for the combustion processes can be very much
shorter than the typical period of oscillation in a chamber. For example, the characteris-
tic residence time for flow through a premixed flame can be O(10−4sec) while oscillation
periods in combustors with dimensions of several tens of centimeters or greater will
have periods of O(10−3sec) or larger. Thus, a reasonable approximation is that the rate
E responds to the instantaneous pressure or temperature without a lag. For the premixed
flame, two rates enter Eq. (23): heating or mixing rate rM and chemical rate rR. Since,
in the quasi-steady flame, chemical rate determines heating rate in proportion, the overall
rate (and the flame speed) becomes proportional to the square root of the product rMrR.
This also determines the overall rate E. If the combustion zone is viewed as a well-stirred
reactor where the mixing time is negligible and chemical kinetic rates are controlling,
the chemical rate rR determines approximately the overall energy release rate per unit
volume E.

These assumptions fit a certain experimental gas-rocket motor (Bowman, 1967;
Bowman et al., 1965), which was analyzed using a nonlinear perturbation approach based
on a 1D unsteady characteristic-coordinate method (Sirignano and Crocco, 1964). The
results from experiment and theory agreed very well. That is, for combustible mixtures with
high flame temperatures, the region with near-stoichiometric mixture ratio was stable while
the lean and rich regions were unstable (see Figures 1 and 2). As the combustible mixture
is diluted, the flame temperature lowers and the stability limits approach closer to the sto-
ichiometric conditions for hydrogen fuel in Figure 1. For methane and air in Figure 2, the
flame temperature is sufficiently low that the stoichiometric and near-stoichiometric region
is unstable. However, enrichment of the air with oxygen yields higher flame temperatures
and thus leads to separation into two zones of instability. In particular, one instability zone
is for fuel-rich mixtures and the other is for fuel-lean mixtures with a stable zone near
stoichiometric conditions. Periodic longitudinal-mode oscillations were observed with a
shock wave traveling back and forth with reflections at the injector face and entrance to a
short nozzle; near-sawtooth pressure profile oscillations were measured and predicted. The
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Figure 1 Gas rocket instability domain as a function of chamber length and mixture ratio. (Reprinted from
Bowman et al., 1965, with permission from AIAA)

Figure 2 Gas rocket instability domain as a function of chamber length and mixture ratio. (Reprinted from
Bowman et al., 1965, with permission from AIAA)

amplitude of the oscillation was proportional to the mean-flow Mach number in the cham-
ber at a fixed mixture ratio and grew as the mixture became more lean (for a lean mixture)
or more rich (for a rich mixture). The flame temperatures at the rich and lean stability limits
were identical at a value less than the stoichiometric adiabatic flame temperature.

The appearance of the identical value of temperature at both rich and lean was
explained using a one-step chemical kinetic model by Sirignano and Crocco (1964). Their
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theory used the inviscid equations in 1D form and considered only the single phase, i.e.,
gas. Therefore, θ = 1, ε̇ = 0; İi = 0; Ṁ = 0 in Eqs. (4) and (18). Using the characteristic
coordinate form of the equations, it was possible to capture the discontinuous shock wave.
Entropy waves were neglected and, since entropy jump across the shock is third order in
pressure amplitude, that higher-order effect was neglected. If kinetics were rate controlling,
E ∼ e−EARuT , where EA, Ru, and T are the activation energy, universal gas constant, and
flame temperature, respectively. From perturbation theory and the assumption of a poly-
tropic relation between temperature and pressure (accurate to second order in amplitude),
it follows that, for a well-stirred reactor model of the gas-rocket combustor,

E′ ∼ EA T ′

RuT̄ T̄
e−EARuT̄ ∼ EA

RuT̄
Ē

p′

p̄
(25)

Therefore, for a given pressure perturbation, the fractional increase in burning rate
E′/Ē becomes larger as the steady-state flame temperature T̄ becomes smaller, i.e., as
the mixture ratio moves further from the stoichiometric value in either direction. The
mean burning rate Ē ∼ M is the mean flow Mach number. Also, the nozzle admittance
coefficient is proportional to M. Consequently, the nonlinear wave amplitude becomes
proportional to M.

In this situation where the characteristic combustion time is negligibly small com-
pared to the period of oscillation, the energy release rate E is essentially instantaneously
responsive to and in phase with the time-varying pressure p. Note that a very similar result
appears with a quasi-steady premixed-flame model of the gas-rocket combustor. The only
difference is that the square-root dependence makes EA/(2RuT) replace the nondimensional
factor EA/(RuT), which appears in the well-stirred reactor model.

4.3. Mixing-Controlled Combustion

In some liquid-propellant rocket applications, the propellants are gaseous as they
enter the combustion chamber. They might have been heated by prior use as a wall coolant
as they flow towards the injectors. Or they might have flowed through a separate burner and
been used to drive a turbo-pump before injection into the main combustor in a vitiated and
heated form. Consequently, the two relevant rates are for mixing and exothermic chemical
reaction, rM and rR. A model for transverse combustion instability in this type of combustor
has recently been created and used by Sirignano and Popov (2013) and Popov et al. (2014).
The problem can be approached as a multi-scale problem.

On the scale of the wavelength, the wave dynamics can be considered as non-heat
conducting, non-diffusive, and inviscid. Also, we have a single gaseous phase. Thus, θ = 1,
ε̇ = 0; İi = 0; Ṁ = 0; in Eqs. (4) and (18). On the contrary, for the scale of the injector
ports, which relate to the combustion scales, terms associated with viscosity, heat conduc-
tion, and mass diffusion were retained in the analysis of the flames. In particular, a separate
analysis on a finer scale coupled Eqs. (1), (3), (5), and (12). That is, a turbulent, axisymmet-
ric, transient jet-flame model was created for each injector to indicate spatial and temporal
variations in temperature, species mass fractions, and chemical reaction rates in response
to the local pressure oscillations. The value for E in Eq. (18) was obtained from the N
jet-flame models for the N co-axial injectors.

Figure 3 shows the magnitude of the in-phase response of E′ for one isolated co-axial
methane-oxygen injector with imposition of a given amplitude magnitude of the sinusoidal
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Figure 3 Oscillation amplitude of in-phase component of E for a given sinusoidal oscillation of p. The volume-
integrated value of E for an injector is presented in kilowatt units. [© William A. Sirignano. From Sirignano and
Popov (2013). Reproduced by permission of William A. Sirignano. Permission to reuse must be obtained from
the rightsholder.]

oscillation of p′. The contour plot shows the amplitude of the volume integral of E con-
tributed by that single coaxial methane-oxygen coaxial injector as a function of the two
characteristic times normalized by the period of oscillation: f τM and f τR where f is the
oscillation frequency. Each straight line in the figure considers a fixed ratio of the charac-
teristic combustion times, τM/τR with varying f. The cross markings indicate locations of
resonant transverse-mode oscillations for a given 28-cm-diameter, ten-injector combustion
chamber. They correlate with regions of high response for E. One-step chemical kinetics
and turbulent jet mixing models were used in the calculations by Sirignano and Popov
(2013); the line slopes indicate that one path with the smaller slope has a longer mixing
time while the other path with the steeper slope has a longer chemical time. Consequently,
the first line corresponds to mixing-rate control while the other applies to kinetic-rate con-
trol. The oscillation of E lags the pressure p indicating that at least one of the characteristic
combustion times is sufficiently long to produce the time-lag effect. The line with the lower
value of the slope corresponds to actual experimental observations for methane oxidation.
The case with the larger slope was artificially chosen to demonstrate the dependence.

At the high temperatures and pressures in the combustion chamber, the kinetics
will be fast and mixing will become rate controlling. Turbulent diffusivities for heat and
mass and a turbulent viscosity are chosen, which depend on the jet velocity at the exit
of the injector and the injector radius. The jet velocity and, therefore, the diffusivities and
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viscosity will oscillate with pressure in the two cases studied: (1) injector mass flux remains
constant with pressure oscillation or (2) the flow through the injector is acoustically coupled
to combustion chamber oscillation.

4.4. Vaporization-Controlled Combustion

In the case where liquid fuel (and/or liquid oxygen) is injected into the combus-
tion chamber, two other characteristic combustion times are added. In addition to a gas
mixing time and a chemical reaction time, a time for liquid stream breakup into droplets
and a time for droplet vaporization are present. The atomization time is commonly of
O
(
10−5 − 10−4 sec

)
, which means that it usually is fast enough compared to the oscil-

lation period so that it can be taken as instantaneous. It usually is modified most from the
nonoscillatory behavior by transverse velocity oscillations and changes would be in phase
with that velocity. Thus, for a transverse spinning or traveling wave, the atomization pro-
cess oscillation will be in phase with pressure while it is 90◦ out of phase for a tangential or
radial standing mode. The fluctuation in the atomization process is very important because
it affects the droplet-size distribution and, therefore, indirectly has substantial impact on
combustion time lag.

For hydrocarbon fuels burning with oxygen or air, the vaporization time is com-
monly longer than the chemical time and mixing time. Therefore, it is rate controlling and
determines the time lag in oscillatory combustion. Early works by Priem and Heidmann
(1960) and Heidmann and Wieber (1965) considered implicitly a time lag in the heating
of the liquid droplet interior, using a quasi-steady gas-phase assumption. However, they
assumed that the temperature remained uniform through the liquid interior although time
varying. This would increase the impact of the thermal inertia and underestimate fluctua-
tions in surface temperature and vaporization rate during oscillation. In analyses by Strahle
(1965a, 1965b, 1965c, 1967) and Williams (1965), the emphasis was placed on gas-phase
unsteadiness while liquid-phase temperature did not oscillate. Flat-plate, stagnation-point,
and wake-flame models were used. The examination of a time lag due to liquid heat-
ing with both spatial and temporal variations in the liquid-phase was first done by T’ien
and Sirignano (1971) with the emphasis on the rocket combustion instability problem; a
flat-plate model was used. The heating time of the liquid is the slowest process and, there-
fore, rate-controlling for the vaporization time. Consequently, the liquid-phase unsteadiness
determines frequency range where vaporization rate is most responsive to fluctuations in
the ambient gas. The most advanced droplet modeling is built on this premise (Sirignano,
2010).

For combustion instability cases where vaporization is rate controlling, the frequency
domain where instability is most probable will align with the characteristic time for heat-
ing of the droplet liquid interior. (Exceptions can occur at high pressures in the near-critical
domain, which is discussed in the next subsection.) One study of longitudinal-mode insta-
bility in a liquid-fueled ramjet combustor by Bhatia and Sirignano (1991) shows some
interesting and relevant results for rockets as well as ramjets. They consider a 1D analysis
of a combustion chamber at elevated pressure with inflowing decane droplets and air and
a short, choked exit nozzle. Configurations with various chamber lengths, average initial
droplet size, and mixture ratios were examined. Thereby, both the characteristic combustion
time and the natural longitudinal frequency were varied widely. They used a vaporization
model that accounted for transient heating of the droplet liquid interior and convective
heating through a gas-film boundary layer and a liquid internal circulation due to relative
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Figure 4 Oscillation in spray combustor with choked nozzle. Stability limits for two overall equivalence ratios.
Numbers in parentheses are ratios of oscillation period to droplet heating time. [© William A. Sirignano. From
Bhatia and Sirignano (1991). Reproduced by permission of William A. Sirignano. Permission to reuse must be
obtained from the rightsholder.]

gas-droplet motion (Abramzon and Sirignano, 1989). One-step chemical kinetics were used
following Westbrook and Dryer (1984). The droplet vaporization time is controlled by the
time to heat the liquid interior and in this way depends on initial droplet size. For vaporiza-
tion control, we expect vaporization time and combustion time to vary with initial droplet
radius to a power between one and two (Sirignano, 2010).

Figure 4 shows the correlation between oscillation frequency (or period) and charac-
teristic combustion time lag. The unstable region centers around a certain range of time
ratios. For the leaner mixture, the zone of instability becomes more narrow, which is
expected because the energy per unit mass added to the gas through combustion decreases
with equivalence ratio. Note that these results differ from the findings in subsection 4.2
since chemical-kinetic-rate control and mixing/vaporization-rate control produce different
dependencies for the rate. For very small droplet size, the two results are expected to come
closer, which is seen to some extent. As the droplet size becomes smaller, the combustion
time lag becomes shorter and the instability limit depends less on the frequency (or equiv-
alently the chamber length). Note that finding about frequency dependence is consistent
with the experimental and theoretical results for the kinetics-controlled unstable combustor
(Bowman et al., 1965; Sirignano and Crocco, 1964) where the limit became virtually inde-
pendent of frequency. The time-ratio for maximum instability of about 0.15 is consistent
with the calculations of Tong and Sirignano (1989) when adjustments are made for different
normalization schemes.

There are various other physical phenomena with new time and length scales that can
affect vaporization rates. Turbulence can interact with droplets. Smaller scales of turbulence
can modify transport rates substantially through modification of Nusselt and Sherwood
numbers. Larger scales of turbulence can modify ambient conditions and move droplets
through drag forces. In a dense spray, transport properties can be significantly reduced
from the values for an isolated droplet. These effects are reviewed by Sirignano (2014) and
Sirignano (2010) and will not be discussed in detail here.
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4.5. Transcritical and Supercritical Combustion

Development of aerospace propulsion engines is generally in the direction of increas-
ing combustion chamber pressure. Thereby, injection and combustion of propellants
at near-critical and supercritical thermodynamic conditions are relevant. There are key
challenges associated with combustion at near-critical and supercritical conditions The dis-
tinction between liquids and gases disappears at high pressures above the thermodynamic
critical point, which has a strong nonlinear dependence on the composition. This introduces
some crucial phenomena that are neglected when the compositional distinction between
the original liquid and its surrounding gases in the combustor were neglected. Also, the
reduced surface tension can cause a new mechanism to be the rate-controlling factor for
energy conversion. Introductions of the major scientific issues for transport and thermo-
dynamics in this new combustor environment are given by Yang (2000), Zong and Yang
(2006), Schmitt et al. (2011), Sirignano and Delplanque (1999), and Sirignano (2010).

Transitions in the propellant flow between subcritical conditions and supercritical
conditions can occur in several ways. Two or more initially supercritical propellant flows
might be mixed to yield a mixture that is subcritical at the same pressure. A flow ini-
tially at supercritical pressure but at subcritical temperature can be heated by combustion
to achieve supercritical temperature. Propellant flows, which are initially at supercritical
pressure, might be expanded to subcritical pressure. These situations can create transcritical
behavior in a spatial sense and/or a temporal sense.

As a subcritical flow enters the near-critical domain, some interesting phenomena
may occur. Decreasing and ultimately disappearing values of the coefficient of surface
tension and the energy of vaporization must be considered. There is a need for accurate
equations of state. Consequently, a more sophisticated analysis of the thermodynamics is
required than is normally used for combustion and liquid injection at lower pressures. The
rate-controlling mechanisms for combustion can change as the critical point is approached
or exceeded. For example, at low surface tension values, the secondary atomization of
“parent” droplets and vaporization of resulting smaller droplets might be faster than the
vaporization rate of the parent droplet. Or the breakup of the injected stream could result in
a very different distribution of droplet size. Another possibility is that, with reduced energy
of vaporization, mixing of vapors with surrounding gas might be slower than the vaporiza-
tion rate. Depending on the propellant combination, the role as the liquid propellant with
the slower vaporization rate could change between fuel and oxidizer as the critical point for
one of the propellants is approached. Thereby, it is necessary to consider a range of possible
transitions, giving several interpretations to the description of transcritical behavior.

High-pressure and supercritical ambient conditions have a considerable influence on
the mechanisms controlling engine behavior and performance. Most of these effects are
related to droplet behavior. When liquid is injected into a combustion chamber that is filled
with a gas at supercritical thermodynamic conditions, all aspects of the combustion pro-
cess from atomization to chemical reaction can be expected to depart significantly from the
better-known subcritical patterns. Many practical applications involve the introduction of
the spray into an environment where the ambient pressure is supercritical for the liquid but
the liquid starts with a subcritical temperature below the ambient gas temperature. In this
case, there is a distinction between the phases in spite of the supercritical pressure; dis-
continuities in density and composition occur across the interface between the droplets in
the spray and the surrounding gas. Typically, the ambient gas is a different species from
the liquid. The case where the liquid is introduced into an environment that consists solely
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of its own vapor is of very limited interest. Generally, heat is supplied from the higher
temperature gas to vaporize the liquid. Heat transfer takes a finite, albeit very short, time.
While the liquid is heating, some vaporization occurs. The liquid temperature at the inter-
face can eventually rise to the critical temperature for the given pressure. Once that surface
temperature reaches the critical value, there is a continuous variation of density and other
properties across the “interface.” Quotation marks are used because the lack of any dis-
continuity there removes its right to be called a true interface. Anyway, this “interface”
becomes a surface along which the critical temperature exists with liquid on one side (for
subcritical temperature) and the supercritical fluid on the other side. With time and contin-
ued heating, this surface propagates into the liquid until all of the liquid reaches a critical
temperature.

Proper algorithms are needed to formulate computational models, including subgrid
models, to address these transcritical situations where propellants or fuel pass through
phase transitions related to the thermodynamic critical point. Models for vaporization of
hydrocarbon fuels in an oxidizing gaseous environment have been developed by Hsiao
et al. (2011), Zong and Yang (2006), and Hsieh et al. (1991). For oxygen droplets vaporiz-
ing in a hydrogen gas environment, see Delplanque and Sirignano (1993) and Yang and Lin
(1994). Delplanque and Sirignano (1995) considered vaporization at transcritical conditions
with droplets moving in a convective environment; Delplanque and Sirignano (1994) con-
sidered the effects of liquid stripping from the droplet surface at reduced surface tension.
Delplanque and Sirignano (1996) analyzed these effects in an unstable combustor.

Consider a spherically symmetric, constant-pressure situation in which Fick’s law
governs mass diffusion. The gas solubility in the liquid becomes important near the critical
point so that even if the liquid phase is initially monocomponent, it is necessary to consider
multicomponent behavior in the liquid phase. The liquid density must also be considered as
variable rather than constant. Therefore, the same unsteady forms of the continuity, species,
and energy equations are used in both the liquid and the gas phases. Note, however, that
the energy of vaporization will decrease as the critical point is approached; now, it must be
considered to be strongly dependent on the thermodynamic state. The thermal, mechanical,
and chemical equilibria at the interface are expressed by the continuity across the interface
of the temperature, pressure, and chemical potential, respectively.

Typical models (Delplanque and Sirignano, 1993) include a detailed computation of
the high-pressure phase equilibria based on a cubic equation of state. A prevalent cubic
equation of state used in this range of pressures and temperatures by the spray combustion
community has been the Redlich-Kwong equation of state:

p = RT

(v − b)
− a

T0.5v (v + b)
(26)

where v is the specific volume. This empirical cubic equation has only two parameters, a
and b.

The enthalpy of vaporization to be used in the energy-balance condition at the inter-
face is the energy per unit mass (or per mole if preferred) required for vaporizing at the
given temperature and pressure and into the particular surrounding gaseous mixture. On the
other hand, the latent heat used at conditions well below initial values is the energy per unit
mass required for vaporizing the liquid into an environment composed of its own vapor.
The enthalpy of vaporization for each species can be determined as a function of interface
temperature, mole fractions on both sides of the interface, and the molecular weight.
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Another challenging issue inherent in the simulation of transcritical-phase processes
is the evaluation of transport properties. Some transport properties (e.g., thermal conduc-
tivity) are expected to diverge at the critical transition. To quantify this singular behavior, a
given transport property is considered to be the sum of a low-density value, an excess value
due to high-pressure effects, and a critical enhancement, including the singular effects at the
critical transition. While these transport-property singularities are important to our under-
standing of critical phenomena, their macroscopic effects on droplet behavior in conditions
relevant to actual processes (e.g., convective droplet heating and vaporization) might not be
so pertinent.

The predictions of current models are qualitatively consistent. After the introduction
of a droplet into a hot, supercritical, quiescent environment, it is heated by conduction, and
its diameter increases because the liquid density decreases as the temperature rises. Density
inside the droplet is nonuniform and internal circulatory liquid convection can occur under
shear forces produced by relative gas-droplet motion. The droplet surface temperature rises
until it reaches the computed critical mixture value. During this phase, the mixture compo-
sition on either side of the liquid-gas interface is imposed by the chemical equilibrium and
mass diffusion that occurs in the droplet.

See Figure 5 from the analysis by Delplanque and Sirignano (1993), which relates to
the vaporization in LOX/H2 liquid-propellant rocket motors. It shows regimes with distinct
phases for the oxygen liquid and hydrogen gas. Pr is the pressure divided by the critical
pressure for pure oxygen. At pressures above the critical pressure (e.g., Pr = 2 through 7 in
the figure) but temperatures below the critical temperature (about 154 K), it is still possi-
ble to obtain a phase equilibrium with, of course, distinction between the phases. When
the liquid exists with the ambient gas differing from the pure vapor of the liquid, some
mass exchange occurs; the vapor of the liquid enters the gas phase and some of the gas
molecules enter the liquid. This exchange becomes more important as the critical point is
approached. The figure shows that as Pr increases, the equilibrium has a decreasing frac-
tion of oxygen and an increasing fraction of hydrogen in the liquid at the interface. That is,
more hydrogen has dissolved. The temperature value above which the phases are no longer
distinct will decrease with increasing pressure. The energy of vaporization is non-zero in
this domain but decreases with increasing temperature until it reaches zero at the temper-
ature value where phase distinction disappears. The figure shows that for Pr = 1 or less,
the liquid is nearly pure oxygen while the gas at the liquid interface might have a signif-
icant fraction of the vapor from the liquid. The vapor fraction goes to unity as the liquid
temperature goes to the saturation value. This saturation temperature increases with pres-
sure, reaching the critical temperature as the critical pressure is reached. Above that critical
temperature value, the distinction between phases is lost. In an unpublished work, Yang
and co-workers have made similar calculations for liquid dodecane C12H26 surrounded by
oxygen gas.

Consider a droplet of liquid component A in gaseous component B at pressure pa.
The liquid initial temperature is Tê and the initial ambient temperature is Ta > Tl. For con-
ditions well below the critical conditions, temperature varies continuously throughout the
surrounding gas and liquid interior and is continuous across the liquid-gas interface. A neg-
ligible amount of the ambient gas dissolves in the liquid; composition and densities are
discontinuous across the interface but piecewise continuous in the gas and in the liquid.
As the critical conditions are approached, ambient gas dissolves in the liquid and the mag-
nitudes of the interface discontinuities in density and in composition decrease. Still, the
critical temperature and the critical composition do not occur at the same point in space



184 W. A. SIRIGNANO

Figure 5 Computed phase equilibrium of the oxygen/hydrogen system. [Reprinted from International Journal
of Heat and Mass Transfer, vol. 36(2), J.-P. Delplanque and W.A. Sirignano, “Numerical study of the transient
vaporization of an oxygen droplet at sub- and super-critical conditions,” pp. 303–314, 1993, with permission from
Elsevier.]

and time. At the point when and where the discontinuity first disappears, the temperature,
composition, and density assume their critical values simultaneously. After that time, the
critical isotherm and the critical mass fraction isopleth must coincide. This critical sur-
face that has replaced the interface will regress as further heating and mixture occur, until
it reaches the droplet center. Therefore, the phenomena of mixing and vaporization can
involve situations in which both a subcritical spacial domain and a supercritical spacial
domain can exist simultaneously. This situation is described as transcritical.

Practical environments, such as those found in engines, are characterized by signif-
icant relative velocity between the gas and the droplet with subsequent strong convection.
The first effect is that heat and mass transfer are enhanced by the convection. With near-
critical and supercritical environments, the surface-tension coefficient of a droplet decreases
to zero as the interface temperature approaches the critical conditions. Hence, the second
effect is that droplet deformation and secondary atomization can be initiated by smaller
values of the droplet-gas relative velocity. The aerodynamic consequence of droplet motion
is that the fore and the aft pressures on the surface become greater than the pressures
on the side. At reduced surface tension, there is a tendency therefore for the droplet
to deform in an axisymmetric manner to the shape of a lens. The surface-tension force
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will resist this deformation since it increases the surface area. For small values of Weber
number We = ρlU2

s Ls/σs, and Bond number Bo = asρlL2
s /σs, there is some vibration but no

significant deformation or breakup. ρl, Us, as, Ls, and σs are the liquid stream density, veloc-
ity, acceleration, characteristic length dimension, and surface tension, respectively. Above
We = 5, aerodynamic forces have some effect on the droplet shape. A critical value of We
occurs in the range 10–20, above which continuous deformation of the droplet occurs; the
droplet has a convex side and a concave side and takes the shape of a bag or an umbrella.
Viscosity does not play a significant role in this deformation. When We is above the criti-
cal value, the shear on the droplet surface will cause stripping of liquid from the surface.
The critical value for the Bond number is 11.22 according to Harper et al. (1972); above
that value, surface waves grow exponentially. The first unstable mode appears at and above
Bo = 11.22. Other unstable modes will appear in sequence as Bo is continually increased.
However, they remain small enough in magnitude until Bo = O

(
104

)
so that the aerody-

namic forces dominate. Experimental data for shock-wave interaction with a water droplet
from Ranger and Nicholls (1972) indicates that stripping occurs above Bo = 102, filling the
near wake with a mist.

Delplanque and Sirignano (1993) showed for droplet vaporization in a supercritical
convective environment (with neglect of secondary atomization), based on the Abramzon
and Sirignano (1989) film model, that a LOX droplet injected into a rocket engine is likely
to reach the critical state before it disappears, much sooner than in a quiescent atmosphere.
However, they showed that, because of the behavior of the surface-tension coefficient at
near-critical conditions, a LOX droplet in a rocket engine is likely during its lifetime to
undergo secondary atomization in the stripping regime (mass removal from its surface by
aerodynamic shearing) before the droplet interface reaches the critical mixing conditions.
Results obtained with this model confirmed that the stripping rate is much larger than the
gasification rate. The predicted droplet lifetime was found to be reduced by at least one
order of magnitude when stripping occurred. An important consequence is that, in most
cases, the droplet disappears before the interface can reach the critical mixing conditions.

Now, it can be seen how this result can affect the predicted overall performance of
propulsion systems and, in particular, the likelihood of combustion instability. The open-
loop response of LOX droplets to prescribed oscillatory ambient conditions consistent with
liquid rocket engines was investigated by Delplanque and Sirignano (1996) who used the
supercritical droplet-combustion models described above both for isolated droplets and
droplet arrays. This study evaluated the longitudinal-mode stability of the combustion
chamber assuming concentrated combustion at the injector end, short nozzle, and isen-
tropic flow downstream of the combustion zone, following the work of Crocco and Cheng
(1956). A response factor G was computed to quantify the Rayleigh criterion, which states
that an initially small-pressure perturbation will grow if the considered process adds energy
in phase (or with a small enough phase lag) with pressure:

G =
∫∫ (

E′p′) dt dz

/∫∫ (
p′)2

dt dz (27)

The primes denote fluctuations with respect to the nonoscillatory values. Delplanque and
Sirignano (1996) note that an underlying assumption to this definition of G is that the
gasification rate provides a good approximation of the energy release rate E.

Figure 6 indicates that, at some frequency, the response factor, determined under the
modeling assumptions by the droplet-gasification process, becomes large enough to drive
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Figure 6 Response factor for an isolated LOX droplet with and without stripping. T∞ = 1000 K, p∞ = 100 atm,

U = 20 m/s. [© William A. Sirignano. From Delplanque and Sirignano (1996). Reproduced by permission of
William A. Sirignano. Permission to reuse must be obtained from the rightsholder.]

longitudinal-mode combustion instability in a hydrogen-oxygen rocket engine. This con-
clusion applies whether the model includes droplet stripping or not. However, the unstable
frequency domain for the stripping model is substantially higher. Obviously, the frequency
at which the peak response factor occurs is mainly correlated to the droplet lifetime through
the assumptions. Therefore, since secondary atomization in the stripping mode results in
a reduction in droplet size and a one-order-of-magnitude reduction in droplet lifetime, it
causes a substantial corresponding shift in the peak frequency, as shown in the figure.
Consequently, when stripping occurs, the peak frequency is significantly larger than the
acoustic frequencies of the common modes for standard cryogenic rocket engine chambers.

Delplanque and Sirignano (1996) argued that, since in these engines droplets with
low surface tension are likely to undergo secondary atomization in the stripping regime
for most of their lifetime, this phenomenon could explain the observed better stability of
hydrogen/oxygen rocket engines compared with that of storable propellant engines (see
Harrje and Reardon, 1972). Although their analysis applied strictly to the longitudinal
mode, the qualitative implication for the transverse mode is even greater because both pri-
mary and secondary atomization processes with transverse modes could be more significant
on droplet-size reductions.

Estimates by Delplanque and Sirignano (1996) of the influence of neighboring
droplets on the droplet response to an oscillatory field obtained with the droplet-stream
model described above indicate that the isolated droplet configuration underestimates the
driving potential of the gasification process. In a dense spray, steady-state vaporization rate
is reduced compared to vaporization rates in a dilute spray. Here, then, we have a situation
similar qualitatively to the findings of the gas-rocket researches by Sirignano and Crocco
(1964) and Bowman et al. (1965); instability is more likely as mean energy conversion
rate is decreased. That is, the fractional increase in energy release rate for a given pressure
perturbation increases as mean energy release rate decreases.
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4.6. Solid-Propellant Burning

Although the emphasis in this article is on liquid fuels and propellants, brief men-
tion can be made of time lags existing in solid propellant burning. The intent is to show
the potential for fundamental similarities between solid burning, liquid burning, and the
burning of gaseous propellants. While the condensed phase now is solid, it still pos-
sesses a characteristic time for heating. Commonly, gas-phase processes are more rapid
and can be considered as unsteady. Models using an unsteady solid-phase heating cou-
pled with a quasi-steady gas phase have been presented by Krier et al. (1968), Denison
and Baum (1961), and Culick (1967). There have also been many approaches where a
two-parameter model, e.g., gain and phase of response, has been used to represent combus-
tion processes (Culick, 1976). These earlier models used a quasi-steady gas-phase model.
Some more recent efforts treat more general conditions; for example, see Roh et al. (1995)
and Jackson (2012) for models of homogeneous and heterogeneous propellant modeling,
respectively.

The model of Krier et al. (1968) (KTSS) used an empirical correlation to relate
the quasi-steady gas-flame behavior to the oscillating pressure. However, it allowed the
solid surface temperature to fluctuate. Essentially, the pressure value primarily affected the
heat flux from the flame back towards the solid-gas interface. The equation for unsteady
heat diffusion in the solid was solved. With the frame of reference fixed to the regressing
interface, a 1D convective-diffusive equation resulted. The regression rate was caused by
temperature-dependent pyrolysis to give a closed system of equations. Sirignano (1968)
used the KTSS model to describe longitudinal combustion instability in an end-burning
solid rocket motor with a short (i.e., quasi-steady) nozzle. The fluctuating gaseous veloc-
ity at the solid surface was related via a history integral to the pressure fluctuation at the
surface. Essentially, a time lag appeared implicitly in the formulation through a kernel in
the history integral; the characteristic time for heat transfer in the solid was given by α

(¯̇r)2

where α and ¯̇r are the solid-phase thermal diffusivity and average surface regression rate,
respectively.

5. DETERMINATION OF LIMIT-CYCLE AMPLITUDE AND TRIGGERING

THRESHOLD

It is interesting to examine what factors control the amplitude of the limit cycle
and the magnitude of the triggering threshold. Here, “limit cycle” means the stable limit
cycle, which is approached as time goes to positive infinity, while “triggering threshold”
means the unstable limit cycle that is theoretically approached as time goes to negative
infinity. Some older results from perturbation theory and some more modern results from
computational fluid dynamics will be discussed. Longitudinal-mode and transverse-mode
oscillations will be examined, with and without shock wave formation. We can examine
both old results from perturbation theory and new results from computational fluid dynam-
ics (CFD) methods. Fewer assumptions are required for CFD but those results are less
powerful in identification of the key mechanisms and the parameter dependencies.

Our perturbation approaches follow the coordinate perturbation approach initiated by
Henri Poincaré (Minorsky, 1962) and expanded by Lighthill and Kuo to the method now
known as the PLK method or method of strained coordinates (Crocco, 1972; Kevorkian and
Cole, 1996).
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5.1. Nonlinear Shock Wave Oscillations

Consider the first cases with shock formation that were studied in the 1960s using
perturbation theory. Sirignano and Crocco (1964) and Sirignano (1964) analyzed nonlinear
longitudinal-mode rocket motor oscillations with combustion concentrated at the injector;
no time lag or history effect in the combustion response; and a short, quasi-steady choked
exit nozzle. Sirignano (1968) considered a longitudinal-mode oscillation for an end-burning
solid-rocket motor with combustion concentrated at the solid-propellant surface; a history
effect on the combustion response through a history integral reflecting the solid-phase
heating process; and a short, quasi-steady choked exit nozzle. Longitudinal-mode rocket
motor oscillations with combustion concentrated at the injector; a time lag in the combus-
tion response; and a short, quasi-steady choked exit nozzle were examined by Mitchell
et al. (1969). Two cases were studied by Crocco and Mitchell (1969): (i) longitudinal-mode
rocket motor oscillations with combustion distributed arbitrarily through the combustor; a
time lag in the combustion response through the use of the Sensitive Time-Lag Theory; and
a short, quasi-steady choked exit nozzle and (ii) tangential-mode rocket motor oscillations
in an annular combustor with combustion distributed arbitrarily through the combustor; a
time lag in the combustion response through the use of the Sensitive Time-Lag Theory; and
a multi-orifice exit with many short, quasi-steady choked nozzles.

These perturbation theories sought the limit-cycle behavior using first- and second-
order perturbation. In accordance with typical analyses in nonlinear mechanics, the
complete description of the first-order terms could only be obtained through examination
of second-order terms. That is, the first-order result is very different from the result of lin-
ear perturbation theory. The nonlinear theory predicts a sawtooth wave profile for pressure
with shock discontinuities while linear theory would predict continuous, sinusoidal wave-
forms. Linear theory cannot predict limit-cycle amplitude. A good estimate of amplitude
and a more exact determination of frequency comes from the second-order theory. To first
order, these above-cited longitudinal-mode nonlinear theories obtain first-order solutions
for velocity perturbation u1, speed-of-sound perturbation a1, and pressure perturbation p1

in the forms:

u1 = f (θ − x) − f (θ + x)

a1 = γ − 1

2

[
f (θ − x) + f (θ + x)

]

p1 = γ p̄

ā

[
f (θ − x) + f (θ + x)

]
(28)

where the function f has velocity units, p̄ and ā are steady-state values for pressure and
sound speed, θ is time normalized by one-half of the oscillation period, and x is cham-
ber axial position measured from the injector and normalized by chamber length L. The
frequency and period of oscillation are not known a priori. Thus, the transformation to
θ involves the introductions of a new strained coordinate and a perturbation series in an
amplitude parameter for the period of oscillation. Thus, 0 ≤ θ ≤ 2 and 0 ≤ x ≤ 1. For the
transverse mode in the annular chamber, x should be replaced by a nondimensional cir-
cumferential position y and the axial velocity perturbation u1 should be replaced by the
tangential velocity perturbation v1. Also, in that configuration, a traveling (spinning) wave
represented by either f (θ − y) or f (θ + y) or the standing wave given by a sum of the
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two functions can appear. The first-order analysis determines the forms given in Eq. (28);
however, the determination of the specific function f requires a second-order analysis.

The periodic function f (θ) is found in all of these cases to be governed by a
differential equation of the following form:

[
f − fm

] df

dθ
= −Af − Bf 2 + Cf τ + DF (f ) ≡ H (f ) (29)

fm ≡ 1

2

[
f (0) + f (2)

]
f τ ≡ f (θ − τ)

∫ 2

0
f
(
θ ′) dθ ′ = 0 (30)

where A, B, C, and D are positive constants and the functional F (f ) is an integral of f .
Sirignano and Crocco (1964) had C = D = 0, i.e., no time lag or integral and B << A.
With B = 0, the median value at the shock fm = 0 and the solution for f (θ) is a linear
function with identical discontinuities at 0 and 2 reflecting the periodicity. With a small
value of B, mild exponential curvature occurs between the discontinuities but the shape
is still essentially a “sawtooth” form. Sirignano (1968) had B = C = 0 with a history
integral F (f ) = ∫ θ

−∞ v
(
θ − θ ′) f

(
θ ′) dθ ′ where v is the kernel resulting from solution of

the diffusive-convective equation in the solid propellant. Mitchell et al. (1969) had B =
D = 0 while Crocco and Mitchell (1969) had B = 0 with the functional F (f ) appearing
as a (1D) volume integral of combustion sources.

The left side of Eq. (29) results only from the nonlinear gasdynamics description of
the chamber flow; combustion processes and nozzle boundary conditions do not affect it.
Of the four terms on the right side of the first equality in Eq. (29), the last three result
only from the coupling with the combustion process. A portion of the first term can also
come from the combustion process while the remainder of the first term is the effect of the
nozzle boundary condition. The details behind the modeling and the determination of the
particular values of the coefficients A, B, C, and D can be found in the four references cited
in the previous paragraph. The Mach number at the entrance of the short nozzle remains
constant; thereby, the velocity perturbation remains proportional to the sound-speed per-
turbation, giving a linear term in the function f. The combustion source terms also appear
to linear order albeit in the second-order balancing of terms. The combustion terms appear
representing velocity fluctuations at the injector end for combustion concentrated there. For
the distributed combustion case, they appear representing fluctuations in the divergence of
the velocity throughout the combustor volume. Note that the time-lag effect caused an infi-
nite slope in f (albeit with a continuous variation) at one value of the argument (other than
the shock at θ = 0 or 2) when τ̄ differed from one-half of the oscillation period (Mitchell
et al., 1969). The history integral produces smoother profiles (Sirignano, 1968) and is more
acceptable on physical grounds.

The linear stability limit is defined by neglecting the nonlinear terms on the left side
of Eq. (29) and setting the left side to zero. At the stability limit, the amplitude of the
oscillation goes to zero. At the stability limit, driving terms from combustion are exactly in
balance with the nozzle damping. With displacement in parameter space from the stability
limit, the amplitude becomes finite and is determined by the solution of the full nonlinear
equation. Therefore, away from the stability limit, there is an imbalance between the com-
bustion driving terms and the nozzle damping terms. When the former exceeds the latter, a
finite-amplitude oscillation results; the left side of Eq. (29) represents that imbalance.



190 W. A. SIRIGNANO

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

2

4

6

Normal displacement, Δ

A
m

pl
itu

de
, ε

Shock
amplitude

Peak to peak
amplitude

Δ*

Peak to peak
amplitude
(continuous
solution)

Δ min

Figure 7 Amplitudes for limit cycle and triggering threshold for longitudinal-mode analysis with shock waves
using the n, τ theory. (Reprinted with the permission of Taylor & Francis from Mitchell et al., 1969.)

In the case where C = D = 0, Sirignano and Crocco (1964) obtained analytical
solutions to Eq. (29). Numerical solution is required if the time lag, time history integral, or
spacial integral appears. Figure 7 from Mitchell et al. (1969) shows amplitude as a function
of normal displacement in n, τ parameter space from the linear stability limit. The curves
result from the numerical solution of Eq. (29) for B = D = 0. Three domains exist: uncon-
ditionally unstable (right of linear stability limit); conditionally stable or bi-stable (near left
of linear stability limit); and unconditionally stable (far left). In the conditionally stable
region, two solutions are found; the lower amplitude describes the unstable limit cycle,
which can be regarded as the triggering threshold. Disturbances of lower amplitude decay
while larger disturbances will grow to the upper value, which describes the stable limit
cycle. The stable limit cycle and a portion of the unstable limit cycle are solutions with
shock waves. The region near the linear stability limit gives continuous solutions that are
consistent with the results of Sirignano (1964). Any disturbance with amplitude lower than
the limit-cycle amplitude will grow in the unconditionally unstable region. Amplitudes
larger than the limit-cycle value will decay to that value but no more. All disturbances will
decay in the unconditionally stable region.

There are several conclusions that are obvious from the above-described analysis.
(i) Equation (29) has the same form and can use the same general numerical procedure for
solution whether or not time-lag or history integrals are included. (ii) The results of Mitchell
et al. (1969) as shown in Figure 7 and Crocco and Mitchell (1969) clearly demonstrate the
solution also includes a stable limit cycle whenever an unstable limit cycle is produced.
A stable limit cycle occurs in unconditionally unstable domains without the appearance
of an unstable limit cycle but unstable limit cycles never appeared alone in those studies.
(iii) Those studies from Mitchell’s dissertation also predicted, as shown in the figure, a
continuous parabolic portion of the unstable limit cycle that matches the description given
by Sirignano (1964) and Zinn (1968). Note that these three points are totally misrepresented
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in Chapter 7 of Culick (2006), which does well describing literature of the 1970s and later
but poorly describing the pioneering work of the 1960s on nonlinear combustion instability.
The misunderstanding about Point (ii) was sustained by Wicker et al. (1996).

Integration of Eq. (29) over the oscillation period yields the first equality below:

1

2

[
(f (2) − fm)2 − (f (0) − fm)2

] =
∫ 2

0
H (f ) dθ = 0 (31)

The second equality results because the magnitudes of f (2) − fm and f (0) − fm are identical
although their signs are opposite. Now, multiply Eq. (29) by the quantity f (θ) − fm + fm
and integrate over the period. Using the results of Eq. (31), it follows that:

1

3

[
(f (2) − fm)3 − (f (0) − fm)3

] =
∫ 2

0
f H (f ) dθ

or

2

3
(f (0) − fm)3 = −

∫ 2

0
f H (f ) dθ =

∫ 2

0

[
A f 2 + B f 3 − C f f τ − D f F (f )

]
dθ (32)

A new result can be shown through the use of Eq. (32). In particular, the right side of
that equation can be shown to be proportional to the acoustic forcing per cycle from the
combination of combustion and nozzle outflow while the left side can be shown to be pro-
portional to the energy dissipation per cycle in the shock wave. This is a remarkable result
because the original second-order analysis maintained isentropic flow through the shock;
i.e., entropy gain is proportional to the cube of pressure change or velocity change across
the shock and thereby third order in the the perturbation series. This result is consistent
with a finding by Crocco (1972) that the power required to drive at resonance a piston at
one end of a closed tube (filled with an inviscid compressible gas) balances the dissipation
rate due to the shock wave.

As noted by Liepmann and Roshko (1957), the entropy change 
s across a shock is
of third order in terms of the pressure jump 
p and is approximated by:


s

R
≈ γ + 1

12γ 2

[

p

p̄

]3

(33)

Note that within the accuracy of the approximation, it is allowed to substitute the mean pres-
sure for the pressure in front of the shock. The pressure jump 
p ≈ γ p̄

[
f (0) − f (2)

]
/ā =

2γ p̄
[
f (0) − fm

]
/ā. Therefore, the energy dissipation through the shock occurs at the

rate ρUsT
s ≈ [
2γ (γ + 1) p̄/

(
3ā2

)] [
f (0) − fm

]3
, where within the accepted error the

shock speed Us is taken as ā. The energy dissipated by the shock over a cycle is then[
4Lγ (γ + 1) p̄/

(
3ā3

)] [
f (0) − fm

]3
. Neglecting higher-order terms in M, the period of the

cycle is 2L/ā.
The velocity at the nozzle entrance will be of the order of the mean-

flow Mach number M. Thereby, the velocity and pressure fluctuations at the noz-
zle entrance are u1 = 0; u2 = Ma1 = [

(γ − 1) /2
]

M
[
f (θ − 1) + f (θ + 1)

]
; and p1 =[

γ p̄/ (ā)
] [

f (θ − 1) + f (θ + 1)
]
. The product of p1 and u2 here gives the acoustic

energy flux per unit area (Culick, 2006) at the nozzle. A positive amount implies that
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energy is flowing out of the chamber. The integral of the product over a cycle yields
2M Lγ (γ − 1)

[
p̄/ā2

] ∫ 2
0 f (θ)2 dθ .

For the concentrated combustion at the injector end (or end-burning solid surface),
the right side of Eq. (29) is

H (f ) ≡ −A f − B f 2 + C f τ + DF (f ) = u2 |nozzle − u2|flame

γ + 1
= O (M) (34)

Now, the pressure fluctuation is identical (except for phase) at the two ends. So, multipli-
cation by the pressure fluctuation p1 at the injector end followed by integration over the
period T of the cycle yields:

2γ (γ + 1)
(
Lp̄/ā2

) ∫ 2

0
f (θ) H (f (θ)) dθ =

∫ T

0

[
p1u2 |nozzle − p1u2|flame

]
dt (35)

Thus, multiplication of both sides of Eq. (32) by the factor 2γ (γ + 1)
(
Lp̄/ā2

)
results in

a new equation with the dissipated energy by the shock over the cycle on the left side and
the net acoustic flux integrated over a cycle on the right side of the equation. Consequently,
when acoustic flux due to combustion adds energy to the chamber volume at a rate greater
than the nozzle efflux, the difference is dissipated in the shock wave in order to establish a
limit cycle. Essentially, Eq. (32) determines the amplitude of the limit cycle at an amount
that maintains the necessary balance between the acoustic influx and the shock dissipation.
While we have considered acoustic energy addition or subtraction only at the ends of the
combustor, a double integration over the combustor volume and over the cycle time of the
product of the pressure fluctuation with the combustion-driven divergence of the velocity
fluctuation can also be added into this energy balance.

Realize that the coefficients A, B, C, and D in Eq. (29) are each O(M) while f itself
is of the order of the amplitude of the fluctuation. That amplitude can be considered to be
O (ε). Therefore, the left side of the equation, which is quadratic, is O

(
ε2
)

while the right
side, which is primarily linear, is O (εM). The balance implies that at the limit cycle, a dis-
tinguished limit is established and the amplitude parameter ε = M. This result is consistent
with the analysis of Sirignano and Crocco (1964) and the experiments of Bowman et al.
(1965).

5.2. Nonlinear Continuous Wave Oscillations

Continuous nonlinear wave oscillations were studied by Sirignano (1964) for the lon-
gitudinal mode and Zinn (1968) for the transverse modes. Both works at Princeton used the
n, τ theory and concentrated combustion at the injector end. Each analysis required a per-
turbation series up through third order in the amplitude parameter ε in order to approximate
the limit-cycle amplitude. Let us examine the need for a higher-order analysis than required
for cases with shock waves. The character of the major results are shown in Figure 8.

The linear unstable domain is shaded in the upper sub-figures. The lowest value
of n on the stability limit occurs with a time lag equal to one half of the period of
oscillation. There, the negative sign in front of the lagged term of Eq. (24) means that
both the instantaneous term and lagged term for energy addition are in phase with the
pressure. Some portions of the linear stability limit curve are adjacent to conditionally
stable domains (lower left sub-figure) while other portions are immediately adjacent to
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Figure 8 Schematic of perturbation results in n, τ . [© William A. Sirignano. From Sirignano and Popov (2013).
Reproduced by permission of William A. Sirignano. Permission to reuse must be obtained from the rightsholder.]

unconditionally stable domains (lower right sub-figure). On the lower left, the unstable limit
cycle (triggering threshold) is shown, while on the lower right a stable limit cycle is shown.
Both curves are parabolas. That is, the amplitude parameter ε grows as the square root of the
normal displacement from the linear stability limit in the n, τ plane. Essentially, the devel-
opment through third order in the perturbation series was needed to obtained the parabolic
curves. These two analyses predicted either a stable limit cycle or an unstable limit cycle
in the neighborhood of any point on the linear stability curve in parameter space. The
expected higher-amplitude, stable limit cycle that accompanies a lower-amplitude, unstable
limit cycle is not predicted with a third-order analysis. Presumably, a higher-order analy-
sis would have predicted the two amplitude solutions in the conditionally stable domain;
however, the perturbation expansions of both Sirignano (1964) and Zinn (1968) terminated
at third order. Note the reassuring result though about the agreement among Mitchell et al.
(1969), Sirignano, and Zinn about the parabolic shape of the nonlinear curve describing a
continuous limit cycle. There are certain implications of these perturbation analyses that
have not yet been discussed. We will return to this point later in this subsection.

Let us first examine some recent CFD results, which will complete the understand-
ing of triggered transverse-mode combustion instability. In particular, we will focus on
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transverse instabilities in a combustion chamber with gaseous propellants following the
analysis of Sirignano and Popov (2013). The chamber exit is a multi-orifice plate with many
short, choked nozzles. The work has been extended by Popov et al. (2014) to quantify the
uncertainty with the triggering event in practical combustors. A 2D model is developed by
integrating Eqs. (18) and (5) over the primary flow direction, x3, after modification for an
inviscid flow with gaseous propellants. A cylindrical combustion chamber is considered
with the injector at x3 = 0 and the nozzle entrance at x3 = L. Variations of the pressure,
velocity, and other variables in the x3 direction will be smaller than variations in other
directions.

Define the 2D average values: p̃ = (1/L)
∫ L

0 pdx3, ρ̃ = (1/L)
∫ L

0 ρdx3, ã =
(1/L)

∫ L
0 adx3, and �̃u = (1/L)

∫ L
0 �udx3. Now, Eq. (18) is integrated over x3, neglecting the

difference between products of averages and averages of products. The pressure variation
in the x3 direction may be assumed to be minor for many transverse oscillations. The major
variation of pressure will be in the transverse direction, as indicated by experimental find-
ings of Harrje and Reardon (1972) and theoretical results of Reardon et al. (1964) and
Zinn (1968). For a pure transverse wave behavior, there is not any acoustical oscillation
in the x3 direction; so, only advection can be expected to produce variations in that flow
direction. These variations tend to be slow exponential variations according to the theory.
Then, px3=0 ≈ px3=L ≈ p̃. The average designation (i.e., superscript tilde) for pressure can
be eliminated; we set p̃ = p. The average designation is also removed for other variables.
Entropy waves and other kinematic waves are neglected.

The 2D wave equation should be recast in cylindrical polar coordinates because of
the combustion chamber shape. r and θ will represent radial distance from the chamber
centerline and azimuthal position, respectively. The pressure and velocity are normalized
by the steady-state pressure and sound speed, respectively. The velocity components are ur

and uθ . The resulting equations may be written as:

∂2p

∂t2
− C1

[
∂2p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2p

∂θ2

]
= R (p, ur, uθ ) + S (p, ur, uθ ) (36)

R (p, ur, uθ ) ≡ (γ − 1)
∂E

∂t
− Ap

γ−1
2γ

∂p

∂t
(37)

S (p, ur, uθ ) ≡ C1

[
p

γ−1
γ − 1

] [
∂2p
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r
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∂ur

∂t
+ C2

∂p

∂r
= −ur

∂ur

∂r
− uθ

1

r

∂ur
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+ u2

θ
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⎡
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p
1
γ

⎤
⎦ ∂p

∂r
(39)
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∂uθ

∂t
+ C2

r

∂p

∂θ
= −ur

∂uθ

∂r
− uθ

1

r

∂uθ

∂θ
− uruθ

r
+ C2

r

⎡
⎣1 − 1

p
1
γ

⎤
⎦ ∂p

∂θ
(40)

In the above equations, no acoustic coupling with the injection system has been considered.
The model of coaxial injection, turbulent mixing, and chemical reaction discussed earlier in
subsection 4.3 has been used to couple the above equations for the wave dynamics with the
jet flame at the exit of each injector port. This model introduces physics and chemistry with
characteristic times that will not be short compared to the period of acoustic oscillation.
Therefore, time delays and a history effect are introduced. Consider a solid circular wall at
radius r = R; that is, no acoustic lining is present. The normal velocity at the wall will be
zero; thus, the following boundary conditions apply to the system of Eqs. (36), (39), and
(40):

ur (t, R, θ) = 0
∂p

∂r
(t, R, θ) = p

1
γ u2

θ

C3R
(41)

C1, C2, and C3 are known constants.
Typical results from a calculation of Sirignano and Popov (2013) and Popov et al.

(2014) are shown in Figure 9. The initial amplitude of a disturbance is shown by the hollow
circles while the black circles indicate the amplitude after 12 cycles of oscillation. Below
the threshold disturbance of 20 atm, the disturbance decays in time towards the steady
state. Above that threshold, it grows towards a limit-cycle amplitude of 154 atm. Near
the threshold, the growth or decay is slower; sample calculations up to 120 cycles show
the same outcome though. Clearly, the operating conditions (mean-flow Mach number,
mean chamber pressure, mixture ratio) for this case place it within a conditionally stable
(bistable) domain. When operating conditions are modified sufficiently in certain directions
both unconditionally unstable and unconditionally stable domains are found immediately
adjacent in parameter space, a qualitatively similar situation to the portrait of Figure 7.
However, in this case, no shock waves resulted. Depending on the operating conditions
and the nature of the triggering disturbance, either traveling (spinning) waves or standing
waves could occur. The traveling wave shapes limit cycles found could be composed of a
basic resonant mode plus superimposed harmonics of that mode. In that case, the pressure
wave shape did not wobble but was reasonably steady in a certain rotating frame of refer-
ence. Note that, for transverse oscillations, the resonant mode frequencies are not integer
multiples of the fundamental resonant mode (unlike the longitudinal mode situation). This
explains why shock waves are unlikely to form in transverse mode oscillations in a circular
cylinder. (Annular chambers can cause exception here.) A second type of limit cycle found
in these computations for other operating conditions could involve the superposition of sev-
eral resonant modes. In fact, in one case, a subharmonic mode was added with a frequency
equal to the difference between the frequencies of the first and second tangential modes,
which were also present. In this second type of situation, the superimposed frequencies are
not commensurate and a temporally wobbly pressure waveform is observed in any rotating
frame.

The results of Sirignano and Popov (2013) and Popov et al. (2014) identify several
difficulties with a Galerkin method or any reduced basis method that identifies a priori the
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resonant modes that will sum to give an accurate solution. It is unclear which modes and
how many modes should be represented. In addition to or instead of the resonant modes,
harmonics of primary modes can appear. Also, subharmonics can be generated.

The CFD results of Figure 9 obviously present more information about the dynamic
behavior than has been gained from perturbation theory. Perturbation theory can, in prin-
ciple, handle transient predictions with the emergence of multiscale methods (Kevorkian
and Cole, 1996) but those techniques were not used for partial differential equations in
the 1960s. They can handle superposition of different resonant modes. However, like clas-
sical Galerkin methods and unlike CFD, the weakness is that the modes must be known
in advance. Nevertheless, there is some more insight to be gained from perturbation the-
ory. Equations (36), (39), and (40) have been written so that the left side has only linear
terms. The nozzle boundary condition in the functional R (p, ur, uθ ) provides a term with
a first time derivative of pressure, which is a damping function for the oscillation. Some
of the energy in the oscillation will be lost by nozzle outflow. The term within R (p, ur, uθ )

having the time derivative of the energy source E can be described as the forcing func-
tion for the oscillation. A combustion model based on turbulent jet diffusion flames at the
injectors relates E back to pressure, temperature, and velocity. Every term in the functional
S (p, ur, uθ ) is second order or higher in the perturbation series; those terms in S are not dis-
sipative or forcing functions but they can have strong influence on the amplitude, and wave
shape for the oscillation. Consequently, there is no major dissipative mechanism other than
the nozzle outflow, unlike the cases with shock wave oscillations. Key factors are that every
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term on the left side is O (ε) or higher; every term in R is O (εM) or higher; and every term
in S is O

(
ε2
)

or higher.
Perturbation analysis showed that the nondimensional amplitude ε of limit-cycle

oscillations with shock waves were of the order of the mean-flow Mach number M. We can
show now that, for continuous wave oscillations, the amplitude parameter ε = O

(√
M
)

.

This relation was implicit in the results of Sirignano (1964) and Zinn (1968) but were not
identified. For simplicity, let us consider a case where the first tangential traveling mode is
excited (although the argument and conclusion is not limited to a specific mode). The multi-
scale perturbation method with coordinate straining will be used. Expand the variables in
a perturbation series, e.g., p = p̄ + εp1 (φ, η, r) + ε2p2 (φ, η, r) + ε3p3 (φ, η, r) + O

(
ε4
)

;
φ ≡ ωt − θ ); ω = ω0 + εω1 + ε2ω2 + O

(
ε3
)

; and η = σ (ε) t, where ω and η are the fre-
quency and a “slow” time. σ goes to zero as ε goes to zero; in fact, it will be found to go
faster.

Consider that, to first order, one obtains p1 = [A (η) cosφ + B (η) sinφ] J1 (s11r),
where J1 is a Bessel function of the first kind and first order while s11 is the lowest eigen-
value of that function. The amplitudes A and B are allowed to vary slowly with time to
capture the transient behavior while φ carries the fast time of the oscillation. The use of
two time variables produces terms of O (εσ (ε)) and higher, which can be added to the
right side of the governing partial differential equations; substitution into R gives terms of
O (εM) and higher; and substitution into S gives terms of O

(
ε2
)
, O

(
ε3
)
, and higher. The

types of terms appearing on the right side of the wave equation are listed below. Each term
would be multiplied by some function of radius r, which is not being detailed here. Those
multiplying functions can be expanded in a Fourier–Bessel series; the J1 (s11r) term in the
series for expansions of the coefficients of cos φ and sin φ will be of special interest.

O
(
ε2
)

: A2 ; A2 cos 2φ ; AB sin 2φ ; B2 ; B2 cos 2φ

O (εM) : A cos φ ; A sin φ ; B cos φ ; B sin φ

O (εσ (ε)) :
dA

dη
sin φ ;

dB

dη
cos φ

O
(
ε3
)

: A3 cos φ ; A3 cos 3φ ; A2B sin φ ; A2B sin 3φ

AB2 cos φ ; AB2 cos 3φ ; B3 sin φ ; B3 sin 3φ

(42)

After substitution and eigenfunction expansion, the terms J1 (s11r) cos φ and J1 (s11r) sin φ

cannot be allowed to remain on the right side of the higher-order wave equations. They are
homogeneous solutions to the left side and would prevent a uniformly valid perturbation
series from developing. These terms must be collected into two groups and each group must
be set to zero. This is accomplished by selecting σ = ε2 = M so that all cos φ and sin φ

terms on the right side appear at O
(
ε3
)
. The appearance of nonoscillatory terms means that

the average pressure is changed by the nonlinear dynamics. The types of terms appearing
here were also found by Zinn (1968) for tangential-mode combustion instability and by
Maslen and Moore (1956) in their classical work on nonreacting transverse waves. Maslen
and Moore (1956) also examined the effects of wall friction and found that a steady acoustic
streaming motion appeared to second order due to the imposed torque.
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In setting those two right-side global coefficients to zero, two coupled first-order
ordinary differential equations for A (η) and B (η) result:

dA

dη
= f (A, B)

dB

dη
= g (A, B) (43)

With appropriate initial conditions, these equations describe the growth or decay of the
instability with the slow time η. Of course, both slow time and fast time are converted
back to a single time variable. Since the functions f and g are cubic in A and B, one or
two sets of values of those amplitudes (other than the trivial A = B = 0) can produce zero
values for the derivatives. These values would mark the unstable limit cycle (i.e., triggering
threshold) and the stable limit cycle. Without shock dissipation, the acoustic energy flux at
the boundaries must balance globally in the limit-cycle condition; it is expected therefore
that O

(
ε2M

)
terms and O

(
ε4
)

terms would balance each other.
Major results here are that the nondimensional limit-cycle amplitude ε is of the order

of
√

M and the nondimensional (using chamber radius and mean sound speed) transient
time for development of the high amplitude oscillation will be of the order of 1 / M.
Equivalently, the dimensional transient-time order of magnitude is the chamber radius
divided by the mean velocity. Since there are no shock waves for dissipation here, higher
amplitude waves result: i.e.,

√
M > M for subsonic mean flow. In fact, the amplitudes for

transverse continuous waves are known to be several-fold larger than longitudinal waves,
which can form shocks (Harrje and Reardon, 1972). Note that Popov et al. (2014) report
a 155 atm peak-to-peak limit-cycle amplitude with a 200 atm mean pressure for a mean
flow M = 0.100. Then, ε = 0.387 and

√
M = 0.316, which are of the same order of mag-

nitude. Also, a rise above the original 200 atm mean pressure is calculated for the midpoint
pressure between the maximum and minimum values in the limit cycle. The transient time
for limit-cycle development (an e-folding time) of 1/M relates to roughly three cycles of
oscillation in that same calculation, which agrees with the finding in the calculation. The
Mach number of the mean flow is representative of the strengths of forcing by combus-
tion and damping by nozzle in the chosen examples here. Different parameters can become
representative of those critical strengths in other configurations.

5.3. General Observations

With regard to the ordering of the terms in an asymptotically correct manner, we have
assumed for convenience that the same order applies to both the stable-limit-cycle ampli-
tude and the unstable-limit-cycle amplitude. An interesting possibility worthy of future
examination is that different ordering occurs. For example, different powers of M might be
appropriate for the two types of limit cycles. This could explain why two distinct solutions
were not found in third-order analyses (Sirignano, 1964; Zinn, 1968).

The characteristic times for combustion will affect the likelihood of instability and
the amplitude of oscillations. The combustion times have this role because they affect the
magnitude of the rate E, which comes in phase with pressure. However, the transient time
for the oscillation to develop is determined largely by the gasdynamics and is only weakly
dependent on the combustion times.

The balance of terms in determining limit-cycle amplitude to lowest order of accuracy
has involved linear combustion and nozzle flow terms matched against nonlinear gasdy-
namic terms for both cases with shocks and without shocks and for both longitudinal and
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transverse modes. These linear terms are the lowest-order approximations to the forcing and
damping of the oscillation. Nonlinear forcing and damping terms should appear to higher
order. Of course, in CFD computations at UCI (Popov et al., 2014; Sirignano and Popov,
2013), the full nonlinear combustion and nozzle effects have been considered. In cases
where linear representation serves for a first approximation, the qualitative differences are
small between the results using an ad hoc two-parameter combustion model (Crocco and
Mitchell, 1969; Mitchell et al., 1969; Sirignano, 1964; Zinn, 1968) and the results using
a physics-based description (Popov et al., 2014; Sirignano, 1968; Sirignano and Crocco,
1964; Sirignano and Popov, 2013); essentially two parameters can do reasonably well
describing the ratio of the E perturbation to the p perturbation to lowest order.

Culick (2006) describes second-order and third-order perturbation analyses at
Caltech (Awad and Culick, 1986; Yang and Culick, 1990; Yang et al., 1990), which never
predicted triggering action. This is not inconsistent with the above-described results, which
indicated that three types of stability zones could be predicted by any model that predicted
the possibility of triggering. That is, by variation of operating parameters, the models of
Sirignano (1964), Zinn (1968), Mitchell et al. (1969), and Sirignano and Popov (2013)
predicted a neighboring domain of unconditional stability and a neighboring domain of
unconditional instability for any bistable domain where triggering occurs. Thus, causes for
not predicting triggering could be due to a wrong choice of operational parameters, a poor
model, or choice of a combustor configuration not subjected to bistable operation. Culick
(2006) suggests that nonlinear gasdynamics by itself is insufficient to develop triggering
possibilities, i.e., bistable domains; it is further suggested that nonlinearity in the combus-
tion description is needed to establish the needed limit cycle. Certainly, that suggestion is
not consistent with the above-described Princeton asymptotic theory from the 1960s or the
recent CFD findings at UCI. For a solid-rocket engine, triggering of combustion instability
was predicted by Wicker et al. (1996).

Unstable and stable limit cycles have been predicted to exist together with balance of
acoustic energy addition via combustion by the contribution of nonlinear gasdynamic terms.
It must be understood that, for cases without shock waves, the nonlinear gasdynamics bring
balance, not by direct consequence within the combustor volume, but rather by influence
on the acoustic energy efflux through the nozzle. In a test (Sirignano and Popov, 2013) with
an artificial example where E is a polynomial in p with no history effect or time lag, the
bistable behavior is predicted. A bistable case was found using a relation E(p) where both
E and dE/dp were strongly monotonically increasing, positive functions of p. This implied
that balance with a stable limit cycle could only occur if the gasdynamic terms grew more
strongly with increasing pressure than the E combustion term.

Limited experimental results exist for comparison with computations. An interesting
program at Purdue University (Shipley et al., 2013) involves a rectangular cross-section
combustion chamber with transverse oscillations. For this geometry, shock waves might
travel in the transverse direction. In fact, Figure 8 of that paper showing oscillatory pressure
profiles indicates the classical result with shocks of steep wavefronts with different steep
fronts for travel in each direction. New analyses will have to reflect this different geometry
if comparisons are to be made. The experimental design also allows for study of the effect
of transverse velocity on the coaxial jet flame from each injector during oscillation. A good
computational analysis of this velocity coupling is needed.

The effect of entropy variation in the wave phenomenon described by Eq. (18) is
generally neglected. For the inviscid, non-heat-conducting case, this leads to the existence
of a velocity potential for the acoustical perturbations, i.e., no vorticity is associated with the
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oscillation. However, some damping of the oscillation can be expected from the presence
of that entropy term. A rough estimate based on a relation of entropy gain with temperature
would yield that the expected magnitude of that entropy term in the wave equation is less
than the energy addition rate due to combustion by a multiplicative factor of (γ − 1) /γ .
Therefore, unless proven otherwise by a more exact analysis, the neglect of that term should
be done with caution.

6. CONCLUDING REMARKS

Combustion instability can occur in an engine with spray flow resulting from injec-
tion of liquid propellants. The presence of the second phase modifies the wave dynamics
but a wave equation can still be constructed describing the nonlinear acoustics. The wave
equation contains terms reflecting the exchanges of mass, moment, and energy between
the phases; however, the highest derivatives in the equation are identical to those for the
single-phase wave equation.

The combustion instability phenomena present a multi-scale problem. Various length
and time scales result from acoustics; kinematic waves; and the processes for injection,
vaporization, mixing, and oxidation. The Sensitive-Time-Lag Theory and other heuristic
approaches allow the bypass of treatment of the smaller scales associated with combustion.
Mathematical and computational approaches that address all of the physically important
scales are desired for the future and are beginning to appear.

Combustion instability becomes more likely when a change in operational parameters
causes the fractional perturbation in the energy release rate 
E/Ē to increase for a given
fractional change in pressure 
p/p̄. The chemical-kinetic-controlled combustion shows
this non-intuitive effect for the gas rocket engine where near-stoichiometric operation can
be more stable than off-stoichiometric operation. This behavior has implications for lean-
combustion systems.

Ubiquitous examples exist where the most unstable domain has a controlling charac-
teristic time that aligns well with the resonant frequency; see the results of Figures 3 and 4.
Cases of poor alignment can explain stable operation. See Figure 6 and the explanation for
stable operation of H2 − O2 systems.

Bistable operational domains are shown to be present in some systems, making non-
linear triggering of an instability a possibility. In these domains, both a stable limit cycle
and an unstable limit cycle (triggering threshold) exist. The bistable region typically lies
between an unconditionally stable zone and an unconditionally unstable zone in operational
parameter space.

For oscillations with shock waves, the associated dissipation keeps the nondimen-
sional limit-cycle amplitude to the order of the mean-flow Mach number M. A perturbation
analysis up to second order in amplitude is sufficient here for the lowest approximation to
amplitude. Comparison with an experiment verified this asymptotic ordering. For continu-
ous waves, larger amplitudes of the order of

√
M appear with a nondimensional transient

development time of the order of 1/M. A third-order analysis is required to estimate
the amplitude. In a limited comparison with CFD results, support for this ordering was
found. For the cases discussed, the Mach number of the mean flow was representative of
the strengths of forcing by combustion and damping by nozzle. In other cases, different
parameters can become representative of those critical strengths.

For longitudinal and transverse modes of oscillation with and without shock waves,
the primary balance in determining limit cycles comes between linear terms representing
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forcing by combustion and damping by nozzle and nonlinear gasdynamic terms. For higher-
order refinement of the description, nonlinear forcing and damping terms can become
relevant.

Some important problems remain related to driving mechanisms for combustion
instability; a few examples can be briefly presented. (i) The interactions of the acoustic
oscillation with the turbulent structures needs to be understood better. When is the cou-
pling well represented as one-way? That is, when does the acoustic field influence the
turbulence without the turbulence significantly affecting the acoustics? We allow here for
indirect influence through the combustion process; i.e., acoustics affect turbulence, which
then influences the combustion driving mechanism. (ii) More studies are needed about the
driving mechanisms for continuous operation at very high pressures and also for intermit-
tent high pressure operation during peak portions of the acoustic oscillation period. It must
be determined when two phases can exist, which cannot be determined a priori by com-
paring the critical pressure and temperature for each propellant to the operating conditions.
Studies of instantaneous and local mixture critical values are needed. (iii) The response of
the combustion processes to transverse waves can be very important but is not well under-
stood. In summary, challenging opportunities for research related to combustion instability
driving mechanisms remain to be addressed further.
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NOMENCLATURE

A pre-exponential factor
At, Ac cross-sectional area of nozzle throat and capture flow
A, B, C, D constants in the generic nonlinear differential for f (θ )
a speed of sound
as acceleration of liquid stream
a,b constants in cubic equation of state
Bo Bond number
cp specific heat under constant pressure
cv specific heat under constant volume
D mass diffusivity
E energy conversion rate per unit volume
EA activation energy
e specific internal energy
F functional in wave function equation
FDi aerodynamic force on droplets per unit mixture volume
f wave function
G response factor
H collection of terms in Eq. (29)
h specific enthalpy
n droplet number density
n interaction index of Sensitive-Time-Lag Theory
p pressure
Q heat of combustion
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R specific gas constant
R combustion chamber radius
R source term in wave equation
Ru universal gas constant
r, ri global rate, rate of process i
S source term in equation
s specific entropy
T cycle period
T temperature
t time
u, v, ui velocity
Us characteristic velocity of liquid stream
v specific volume
We Weber number
xi Cartesian coordinates
Ym mass fraction of species m
ρ density
ρl liquid density
ρ̄ mass of gas per unit volume in two-phase flow
σ asymptotic order for slow time
σs surface tension for liquid stream
τ time lag
τM , τR characteristic times for mixing and chemical reaction
τij viscous stress tensor
	 viscous dissipation
ωm reaction rate for species m

Superscripts

′ perturbation quantity
¯ steady-state value
τ time-lag applied to argument of term

Subscripts

c critical thermodynamic quantity
i, j, x, y, r, θ indices for vector direction
m index for chemical species
1, 2, 3, . . . order of perturbation quantity
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