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Stochastic modelling of transverse wave
instability in a liquid-propellant rocket engine
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The combustion stability of a liquid-propellant rocket engine experiencing a random,
finite perturbation from steady-state conditions is examined. The probability is
estimated for a nonlinear resonant limit-cycle oscillation to be triggered by a random
disturbance. Transverse pressure waves are considered by using a previously published
two-dimensional nonlinear pressure wave equation coupled with Euler equations
governing the velocity components. The cylindrical combustion chamber is a complex
system containing multiple co-axial methane–oxygen injectors; each co-axial jet is
analysed for mixing and burning on its own local grid scheme, with the energy release
rate coupled to the wave oscillation on the more global grid. Two types of stochastic
forcing for the random disturbance are explored: a travelling Gaussian pressure pulse
and an oscillating pressure dipole source. The random variables describing the pulse
are magnitude, location, duration and orientation of the disturbances. The polynomial
chaos expansion (PCE) method is used to determine the long-time behaviour and infer
the asymptote of the solution to the governing partial differential equations. Depending
on the random disturbance, the asymptote could be the steady-state solution or a
limit-cycle oscillation, e.g. a first tangential travelling wave mode. The asymptotic
outcome is cast as a stochastic variable which is determined as a function of input
random variables. The accuracy of the PCE application is compared with a Monte
Carlo calculation and is shown to be significantly less costly for similar accuracy.
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1. Introduction
The problem of liquid-propellant rocket engine (LPRE) combustion instability is a

well-known phenomenon in rocket design. The high energy release by combustion
can, in certain conditions, reinforce acoustic oscillations which grow to destructive
amplitudes. LPRE combustion instability provides a very interesting nonlinear
dynamics problem as shown by both theory and experiment (Harrje & Reardon
1972; Oefelein & Yang 1993; Sirignano & Popov 2013).

The combustion chamber, like any partially confined volume filled with gas, has
an infinite number of natural acoustic resonant modes. In some operational domains,
linear theory predicts that any small disturbance in the noise range can grow to
a finite-amplitude limit-cycle acoustic oscillation driven by the combustion process.
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In another type of operational domain, any disturbance, whether in the noise range
or substantially larger, will decay in time; the only limit cycle is the steady-state
equilibrium. We will focus here on the third type of operational domain, where
both an unstable and a stable limit-cycle oscillation exist; that is, noise and larger
disturbances up to some threshold level will decay with time. However, above that
threshold level, disturbances will develop in time towards the stable limit-cycle
oscillation, which has an amplitude higher than the threshold level, i.e. the amplitude
of the unstable limit cycle. Disturbances of magnitude greater than the stable
limit-cycle amplitude would decay to it but not below it. LPRE oscillations that
can result only from disturbances greater than the threshold value have been termed
‘triggered combustion instability’ in the literature. A disruption in propellant mass flow
or a very large fluctuation caused by transient operation can provide the necessary
trigger. Triggered instability presents the greater challenge and is emphasized here.

In this paper we focus on the bi-stable operating domain of the engine, where
triggering is possible and both an unstable limit cycle and a greater-amplitude stable
limit cycle exist. Neighbouring operating domains with different parameters, e.g. mean
pressure, mass flow and mixture ratio, can be unconditionally stable (i.e. have no limit-
cycle oscillation) or unconditionally unstable (i.e. have a stable limit-cycle oscillation).
The operation parameters remain constant with time; consequently, drift will not occur
from one domain to another during engine operation.

Our approach differs from previous research in that we consider triggering
disturbances as random events. In § 1.1, we discuss briefly the previous literature
on LPRE combustion instability and give a description of the phenomenon. In § 1.2,
we discuss in more detail the uncertainties associated with triggering and review
the literature on polynomial chaos expansions, the main tool used in the stochastic
analysis presented here.

1.1. Review of LPRE combustion instability literature
The history of theoretical and computational research on LPRE combustion instability
will be briefly reviewed, followed by an explanation of the new methods and goals of
this current research.

The leading work during the 1950s and 1960s on linear and nonlinear theoretical
descriptions of LPRE wave dynamics was due to Professor Luigi Crocco and his
students. Linear instability was addressed extensively by Crocco & Cheng (1953,
1956) and Reardon, Crocco & Harrje (1964). The heuristic, two-parameter (n, τ )
coupling between combustion and acoustics was developed, along with the first
method for superposition of two continua for two phases (condensed phase and
gas) for any application. The early work of Tsien (1952) on acoustical reflections
in the nozzle and handling of the throat singularity was extended to address
three-dimensional linear oscillations in rocket engines (Reardon et al. 1964; Crocco &
Sirignano 1967). Further nonlinear perturbation studies by Sirignano (1964), Sirignano
& Crocco (1964), Zinn (1968), Crocco & Mitchell (1969) and Mitchell, Crocco
& Sirignano (1969) showed the existence of both unstable and stable limit-cycle
oscillations for the longitudinal mode, sometimes with shock wave formation, and
for the transverse modes. The unstable limit cycle provides a threshold for triggering:
below this amplitude, disturbances decay in time to zero amplitude, whereas above it,
growth to larger amplitude occurs. The approach predicts either a stable or an unstable
limit cycle for each point in the (n, τ ) plane near the linear stability limit line.

Zinn & Powell (1971) introduced the Galerkin method to the field, still using
(n, τ ) methods. Culick and coworkers used an eigenfunction expansion together with
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a two-time variable technique that had some of the same advantages (see Awad
& Culick 1986; Yang, Kim & Culick 1990; Culick 1994, 2006). More recently, a
Galerkin approach (also known as reduced-basis modelling) has been employed by
Flandro, Fischbach & Majdalani (2007) and Jacob et al. (2010).

Over several decades, some progress has been made in understanding the mecha-
nisms driving the LPRE instability for thermodynamic subcritical and transcritical
operations where vaporization is rate-controlling (Priem & Heidmann 1960; Heidmann
& Wieber 1965; Strahle 1965a,b,c, 1967; Tong & Sirignano 1989; Bhatia & Sirignano
1991; Delplanque & Sirignano 1993; Yang & Lin 1994; Sirignano et al. 1995;
Delplanque & Sirignano 1996; Duvvur, Chiang & Sirignano 1996; Sirignano 2010).

Interest in propellant combinations of hydrocarbon fuel and oxygen, stored as
liquids, is returning to the LPRE field. The analysis and results here will address
situations where the methane and oxygen propellants are injected co-axially as gases.
These propellants will have elevated temperatures at the injectors because they have
been used prior to injection as a coolant.

Numerical simulations can be used to probe and understand the rocket motor as a
complex system and to predict instability. At this time, large-eddy simulations exist
for simple configurations. There are several single injector studies (Oefelein & Yang
1998; Oefelein 2006; Tucker et al. 2007; Yang, Cuoco & Oschwald 2007; Tucker
et al. 2008; Masquelet et al. 2009; Masquelet & Menon 2010; Schmitt et al. 2010,
2011; Guézennec, Masquelet & Menon 2012), but systematic large-eddy simulation of
a multi-injector system is still to be demonstrated.

1.2. Uncertainty of triggering disturbances
The disturbances that trigger combustion instability can result from fluid-mechanical
disruptions in the propellant injection process, shedding of large rogue vortices
through the choked nozzle, extraordinary excursions in local burning rates or a
synergism amongst such events. The disturbances cause a perturbation in local
pressure and velocity for some duration and may be sufficient to trigger a resonant
oscillation in the combustion chamber. Disturbances can be described by their
magnitude, spatial orientation, location, beginning time and duration. Typically,
the rocket engineer does not know these characteristics a priori; therefore, these
parameters bear uncertainty and may be described as stochastic variables. Thus, this
nonlinear dynamics problem may properly be viewed as stochastic. Although the
eventual limit cycle can be described in a deterministic manner, there is uncertainty
about the trigger that provides the path to the limit cycle. There are advantages
in applying a stochastic analysis to this problem. To this end, the deterministic
simulations of Sirignano & Popov (2013) are extended to a more general problem,
in which the perturbation from the steady-state operational conditions, and therefore
the entire solution, is a random variable. This allows for modelling of the uncertainty
about key features of the perturbation, such as its location, duration, orientation and
amplitude. The model can be useful for minimizing the probability of instability.

The stochastic nature of the combustion pertains especially to the initiation
mechanism which moves the dynamics from the steady state (or non-oscillatory
starting transient) to a stable limit cycle (the periodic or chaotic nonlinear oscillation).
The limit cycles and the equilibrium points are deterministic, but the path to them
can be stochastic.

Thus, to understand the source and the result of perturbation with the consequent
instability mechanism, the rocket engine, with its very large number of propellant
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injector streams, can be viewed as a complex system. Each of these streams is a
component with semi-autonomy but strong coupling with other streams and with the
overall chamber wave dynamics. Complex systems are characterized by: (a) many
semi-autonomous components or subsystems; (b) connectivity (networking) amongst
the complex-system components; (c) a multiscale structure; (d) a self-organizing
capability such that the overall structure and macro-level behaviour can emerge
from the interactions amongst the components (nonlinear synergism amongst the
components is vital); and (e) unpredictable behaviour, including chaotic behaviour
(Bar-Yam 1996; Ottino 2004). Therefore, the characteristics of a complex system can
be seen in the reacting flow of a liquid-propellant rocket engine, and a stochastic
approach to describing the instability mechanism relating a perturbation with its
long-time consequence can potentially lead to significant insights.

In order to obtain an accurate solution to this stochastic problem in an efficient
computational manner, we employ a polynomial chaos expansion (PCE) (Xiu &
Karniadakis 2002; Xiu 2010) that expresses the solution as a truncated series of
polynomials in the random variables (RVs). PCEs in terms of Hermite polynomials
of Gaussian RVs were introduced by Wiener (1938), and their convergence properties
were studied by Cameron & Martin (1947). Spectral methods for uncertainty
quantification have been used to study the phenomenon of turbulence (Meecham
& Jeng 1968; Chorin 1970). PCEs were first used in an engineering context by
Ghanem & Spanos (1990) for solving stochastic structural dynamics problems. In
Xiu & Karniadakis (2002), generalized polynomial chaos is introduced via the
Wiener–Askey scheme by matching the family of orthogonal polynomials used to the
probability density function (PDF) of the RVs to ensure optimal convergence. Since
then, PCE methods have been effectively applied in many different engineering fields,
including fluid flow (Le Maître et al. 2001, 2002; Xiu & Karniadakis 2003; Lin, Su
& Karniadakis 2006), heat transfer (Hien & Kleiber 1997; Sluzalec 2000; Liu, Hu &
Yu 2001), flow–structure interaction (Xiu et al. 2002; Witteveen, Sarkar & Bijl 2007),
computational fluid dynamics (Knio & Le Maître 2006) and reacting-flow systems
(Phenix et al. 1998; Reagan et al. 2003; Mendes, Pereira & Pereira 2011).

Although PCE has been used before to study nonlinear oscillations in lumped
dynamical systems, to the best of the authors’ knowledge it has not been applied
for this purpose in distributed parameter systems and, in particular, not for the
study of triggered oscillations in a combustion process. Nonlinear oscillations
present a challenging application of PCE methods, as these methods have difficulty
approximating the long-term solutions of dynamical equations; indeed, convergence
of the PCE is not uniform with respect to the time variable. In Beran, Pettit &
Millman (2006) and Witteveen et al. (2008), the problem of flutter in aeroelastic
systems manifesting as limit-cycle oscillations is studied with PCE methods, and the
long-term time integration issue is considered. More specifically, Beran et al. (2006)
used the Wiener–Haar expansion with basis functions having local support instead
of the more traditional PCE global basis functions, and were able to demonstrate
improved behaviour; Witteveen et al. (2008) employed a probabilistic collocation
method to approximate time-independent variables of the RVs that in turn are used to
approximate a cycle of the oscillation. In this paper, we deal with this issue by simply
selecting a fixed time window so that enough cycles of the oscillation are included to
enable one to infer properly the existence or non-existence of a triggered instability.
With enough terms in the PCE, the solution within this time window can be accurately
represented. As will be discussed later in detail, it is possible to capture the triggering
of unstable oscillations with a modest number of terms in the PCE, at a computational
cost considerably smaller than that of a more traditional Monte Carlo approach.
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The remainder of this paper is organized as follows. In § 2 the governing equations
for the wave dynamics and the jet mixing and reaction are introduced, and the
PCE approximation to the stochastic solution is described. Section 3 provides the
details of the numerical solution as well as analytical expressions for the stochastic
disturbances to the flow that can possibly trigger the large-amplitude transverse
acoustic oscillation. Results are reported in § 4: findings are presented concerning
the long-time behaviour of the primitive variables such as pressure and the ability
to predict limit-cycle oscillations from a finite time window; also, error estimates
and validation for the PCE method are given. We identify those pulse characteristics
that are more likely to cause growth of a limit-cycle pressure wave and study the
dependencies of the triggering probability upon the various characteristics of the
perturbing pulses. Finally, the computational cost versus accuracy of the PCE method
in comparison with a Monte Carlo method is discussed. The major conclusions are
drawn in § 5.

2. Governing equations
Transverse spinning acoustic waves can grow to higher amplitudes than do axial

waves (Harrje & Reardon 1972). This may be attributed to the presence in the latter of
dissipative shock waves, which are absent in transverse spinning waves. We therefore
focus on transverse waves because they are more destructive in general. A simplified
two-dimensional model will be used; it was introduced by Sirignano & Popov (2013)
and applied to a deterministic set of disturbances that have been found to trigger
instabilities when their magnitude is sufficiently large.

The cylindrical combustion chamber will have the injector face at one end and the
choked nozzle at the other end. Many co-axial injector ports will be present to supply
the two propellant flows with oxygen flowing from the inner duct and methane flowing
through the surrounding annulus. Pressure is sufficiently high and there is sufficient
preheating of the propellants to consider propellants and products as compressible
fluids. The deviation from steady-state operation will be governed by a system of
equations involving the nonlinear wave equation for chamber pressure coupled with
Euler equations for the velocity components (Sirignano & Popov 2013). A multiscale
approach will be followed where effects of viscosity, turbulence and thermal and
mass diffusion are neglected on the scale of the oscillation wavelength or chamber
diameter but are considered in the jet flame region surrounding the exit flow from each
injector.

First, we describe the governing equations for a deterministic system with known
initial conditions. Then, we shall present the polynomial chaos expansion method
which converts this deterministic system into a system of stochastic partial differential
equations.

2.1. Deterministic simulation of transverse wave instability
Here we summarize the governing two-dimensional deterministic model equations for
a transverse wave instability simulation. A more detailed description of the derivation
of these equations can be found in Sirignano & Popov (2013). Similarly to that work,
we assume that the propellants in the chamber are at supercritical pressure and hence
can be modelled as a single-phase gas. For simplicity, perfect gas behaviour, with
a constant specific heat ratio, is assumed. Following a standard practice in LPRE
instability analysis, we neglect those wavy variations in the scalar fields (e.g. entropy
or temperature) which result from kinematic waves moving primarily in the main flow
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direction (i.e. the x direction) and whose length scales are small compared with the
acoustic wavelength and the chamber diameter. Such short wavelengths are expected
to be diffused quickly in the turbulent combustion chamber environment.

The perfect gas law is used, although a cubic equation of state would generally
be superior. Qualitatively, the same behaviour as a perfect gas would occur at high
pressure and temperature: pressure would increase with temperature at constant
density and increase with density at constant temperature. For the cases we study,
the quantitative error is quite small and the perfect gas approximation is acceptable.
As an example, for the carbon dioxide product at the representative conditions of
200 atm and 2000 K, the classical van der Waals equation of state corrects the
density predicted by the perfect gas law by less than 3 %. For water vapour, the same
correction is less than 1 %. (The more accurate Redlich–Kwong equation of state is
known to give values that lie between those of van der Waals and the perfect gas law,
thereby predicting lower error.) The compression of the gas at constant temperature
would increase substantially the effect of the molecular interactions. However, at the
high temperatures of interest, the expansive tendency due to temperature balances
somewhat the compression due to increased pressure, moderating the molecular
interaction and the need for correction in the equation of state.

The inviscid forms of the continuity, momentum and energy equations were used
to develop a three-dimensional nonlinear wave equation. Wavelengths are sufficiently
long to justify the neglect of viscous and diffusion terms in the development of
this wave equation. The analysis focuses on pure tangential modes of oscillation
without longitudinal-mode coupling. Therefore, the pressure variation in the primary
flow direction, i.e. over the x variable, is very slight compared to variations in the
transverse plane. The three-dimensional wave equation, azimuthal momentum equation
and radial momentum equations are integrated over the x variable, from injector face
to nozzle entrance. The differences between the averages of products (or squares) and
the products of two averages (or squares of an average) were neglected.

The wave equation for pressure is averaged in the axial x direction to yield the
following two-dimensional evolution equation for the longitudinal average of pressure:
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where r and θ are the radial and azimuthal coordinates, p denotes pressure, u denotes
velocity, and γ is the specific heat ratio. Here E is the energy release rate, and A and
B are constants that depend on the steady-state temperature and pressure, as well as
on the ratio between the throat and entrance areas of the nozzle:
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, (2.2)
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where
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with p0, T0 and a0 denoting, respectively, the pressure, temperature and speed of sound
of the undisturbed chamber, and Athroat and Aentrance the throat and entrance areas of
the nozzle. Here L is chamber length and Rm is the specific gas constant.

The integration of the x-derivatives yielded terms at the injector plane and
nozzle-entrance plane where boundary conditions were applied. The nozzle boundary
condition of Crocco & Sirignano (1966) was applied. With a short (compared with
the wavelength) multi-orifice nozzle, the Mach number at the nozzle entrance remains
fixed while the primitive variables oscillate. The mass flow rate at the injector ports
is constant during chamber oscillation. Consequently, this integration left conditions
at the nozzle-entrance plane in the two-dimensional wave equation. Specifically, the
resulting term is the first-derivative-with-respect-to-time term on the left-hand side
of (2.1). The nozzle will have a damping effect on the oscillation, depending on the
details of the design and the particular oscillation character.

The two momentum equations are averaged in the axial direction to yield
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with C= p1/γ
0 /ρ0.

The co-axial jet mixing and burning for each injector element is analysed with a
locally axisymmetric coordinate scheme. The scale of each injector is small enough
compared with the acoustic wavelength that transverse pressure variation across the jet
may be neglected. Each jet is sufficiently far from its neighbouring jet so that direct
interaction is negligible. Each jet couples in a two-way manner with the acoustic field.
The coupling of the wave dynamics with the jet mixing and burning occurs through
the E term in (2.1).

To obtain the energy release rate E, we introduce the Shvab–Zel’dovich variable
α= YF − νYO, where YF and YO are the fuel and oxidizer mass fractions, respectively,
and ν is the fuel-to-oxygen mass stoichiometric ratio. The variable β= (Q/(cpTo))YF−
T/To + (p/po)

(γ−1)/γ is introduced. After a boundary-layer approximation to neglect
diffusion in the flow direction and an Oseen approximation to allow use of a uniform
velocity for the coefficients of the advective and convective terms, we obtain the
following set of scalar transport equations:
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In the above equations, x and η are, respectively, the axial and radial coordinates
of one of several axisymmetric cylindrical grids co-axial with each injector, and the
source term on the right-hand side of (2.9), after a one-step irreversible Arrhenius
chemical mechanism, has the form

ωF = AcρYOYF e−ε/RuT

= Acpo

νRmTo

p
po

YF[YF − α]
(Q/cpTo)YF − β + (p/po)(γ−1)/γ

× exp
[

ε/RuTo

(Q/cpTo)YF − β + (p/po)(γ−1)/γ

]
, (2.10)

where Ac is the chemical rate constant, ε is the activation energy, Rm and Ru are
the mixture-specific and universal gas constants, respectively, and the diffusivity D is
evaluated based on the turbulent viscosity approximation for a self-similar jet (Pope
2000) with a turbulent Prandtl number of 0.7, yielding

D= U(t)Ro

24.5
, (2.11)

with U(t) being the jet axial velocity. For further details on the derivation of these
scalar evolution equations, see Sirignano & Popov (2013). The set of equations (2.7)–
(2.11) is applied independently for each jet exiting an injector. Through the pressure
effect in (2.10), they couple to the wave dynamics described in (2.1), (2.5) and (2.6).
The radial coordinate, η, in (2.7)–(2.9) is the local radial coordinate for each jet and
therefore differs from the chamber radial coordinate, r, used in (2.1), (2.5) and (2.6).
The integration over the x direction of the result at each time for the reaction rate
determined in (2.10) gives the value of E to be substituted into (2.1).

The problem has several similarity parameters that result if the equations were to
be non-dimensionalized using the chamber radius and the speed of sound at mean
chamber conditions as the reference length and velocity values. Other steady-state
conditions would also be used as reference values in the non-dimensional form of
the equation. The Mach number at the nozzle-entrance plane is critical; since the
multi-orifice short-nozzle configuration makes this value uniform over that plane, it
is a similarity parameter fixed by the nozzle design only. The ratio of chamber radius
to mean speed of sound, natural period of oscillation, characteristic jet mixing time
based on jet diameter and characteristic chemical time are four important time scales
and form three relevant time ratios. However, since the mode of oscillation is not
known a priori, the period of oscillation is not known until a calculation is made.
So the most interesting similarity parameters can only be given after the calculation,
e.g. the product of the oscillation frequency and the characteristic chemical time or
the product of the frequency and mixing time. For this reason, the dimensional form
of the equations is used in the calculations.

2.2. Galerkin approximation of a stochastic PDE system with uncertainty in the
initial conditions

In order to explore more efficiently the behaviour of the combustion chamber, we
shall generalize the deterministic problem of the previous subsection by introducing
a random initial condition, reflecting the uncertainty in the nature of the disturbance
which causes an instability.

Pulses are applied to simulate triggering mechanisms. In order to trigger transverse
travelling or spinning waves, an orientation must be associated with the pulse. A
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symmetric pulse such as a solitary monopole can yield only standing waves. Two
types of pulses with an orientation are used: (i) two consecutive Gaussian pulses
separated very slightly in the initiation time and in the locations of the Gaussian
centres; and (ii) a dipole pulse which inherently has an orientation. The first type
results in some mass addition, since the superposition of the pulse modifies the
density profile and the integral of the density over the volume from the steady-state
profile and integral value. It is therefore similar to the gunpowder bombs used in
experimental testing and rating of LPREs discussed by Harrje & Reardon (1972). It
might also represent a disruption in the rate at which propellants are supplied to the
chamber. This type of pulse is called a travelling Gaussian pulse and was introduced
by Sirignano & Popov (2013). In this study, we extend that first pulsing approach
to examine a pair of travelling pulses with stochastic variables determining the
relative timing and relative orientation of each member of the pair. The second type
involves negligible mass addition and thereby better represents a natural disruption
with the flow and combustion processes in the combustion chamber. Essentially, in
this dipole type, a pair of closely adjacent oscillating (but out of phase) monopoles
provide an orientation through the relative position of the monopole components
and a characteristic time through the oscillation frequency. The general results are
qualitatively similar terms of triggering action.

The perturbation from steady-state operating conditions is uniquely determined by
a vector, ξ , of independent random variables; ξ may either affect the initial condition
of (2.1) or determine a forcing function on the right-hand side of (2.1) for a short
interval of time at the beginning of the simulation.

Then, the solution of the system of PDEs from the previous subsection, consisting
of the fields p, ui, α, β and YF, may be expressed as a set of fields, in the form
[p, ui]=n(r, θ, t, ξ) and [α(j), β(j),Y (j)F ]=m(x, η, t, ξ), with the superscript (j) denoting
a particular injector from the set of injectors for the given engine design; therefore,
the system consisting of (2.1) and (2.5)–(2.9) forms two multivariate PDE systems

L1(n, r, θ, t, ξ) = f 1(r, θ, t,m, ξ), (2.12)
L2(m, x, η, t, ξ) = f 2(x, η, t, n, ξ), (2.13)

where (2.12) governs the evolution of p, ur and uθ on a two-dimensional r–θ grid.
Equation (2.13) governs the evolution of a certain number of sets (one for each
injector) for the fields α, β and YF on two-dimensional x–η grids, co-axial with the
injector axes. Here L1 is the differential operator representing (2.1), (2.5) and (2.6),
and L2 is the differential operator representing (2.7)–(2.9); f 1 and f 2 are source
terms. Note that (2.12) and (2.13) are coupled via the dependence on m of f 1, the
source term in the evolution equation of n (due to the pressure being dependent on
the energy release) and, conversely, via the dependence on n of f 2 (due to the YF
source term being dependent on pressure). We shall employ the stochastic Galerkin
method to approximate the solutions of (2.12) and (2.13). For an in-depth introduction
to the stochastic Galerkin technique, the reader is referred to Xiu (2010).

A truncated polynomial chaos expansion (PCE) consists of the approximations

n(r, θ, t, ξ) ≈
P∑

k=0

nk(r, θ, t)Ψk(ξ) (2.14)

m(x, η, t, ξ) ≈
P∑

k=0

mk(x, η, t)Ψk(ξ), (2.15)
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where the Ψk(ξ) are P + 1 polynomials in the random vector ξ . The polynomials
Ψk are orthogonal with respect to the distribution of ξ and form a set of basis
functions. Therefore, the approximations in (2.14) and (2.15) converge in an L2
sense. In particular, for the present application, which uses uniform random variables,
the Ψk(ξ) for the lth-order PCE expansion are all of the possible n-dimensional
products of the Legendre polynomials in the scalar components of ξ of degree up
to l. The number of all such polynomials, P + 1, is equal to (n + l)!/(n! l!). For a
fixed simulation end time TF, this representation of the sample space implies spectral
convergence of the PCE with respect to the order l (Xiu 2010). This means that
the approximation error is O(l−p), where p is the highest-order derivative of the
solution with respect to ξ that is bounded in L2. Thus, if the solution is analytic in
ξ , the convergence rate is exponential. As will be further elaborated in § 4, for the
low-dimensional sample space used in this study, the PCE method has substantially
better computational efficiency than a standard Monte Carlo procedure.

Substituting the approximations (2.14) and (2.15) into (2.12) and (2.13), and then
taking the inner product, denoted by 〈 · | · 〉, over the range of ξ with each of the
polynomials Ψk(ξ) yields〈

L1

(
r, θ, t, ξ ;

P∑
k=0

nk(r, θ, t)Ψk(ξ)

) ∣∣∣∣Ψi(ξ)

〉
= 〈 f 1(r, θ, t,m, ξ) |Ψi(ξ)

〉
, (2.16)〈

L2

(
x, η, t, ξ ;

P∑
k=0

mk(x, η, t)Ψk(ξ)

) ∣∣∣∣Ψi(ξ)

〉
= 〈 f 2(x, η, t, n, ξ) |Ψi(ξ)

〉
, (2.17)

which are two systems of P + 1 deterministic equations, each similar to the system
(2.1)–(2.9). They can be solved numerically for each of the P + 1 coefficients
nk(r, θ, t) and mk(x, η, t), using the same discretization schemes as for the
approximation of a deterministic solution to (2.1)–(2.9).

A sparse grid based on Smolyak’s quadrature rule is used to deal with the
integration of the nonlinear terms when evaluating the inner products in (2.16)
and (2.17). Specifically, we use Q(1)

i f to denote the ith order of a univariate nested
quadrature rule (Petras 2003), i.e.

Q(1)
i f =

∑
j

qj f (xj), (2.18)

where qj and xj are the weights and nodes, respectively, of the ith-order univariate
quadrature, with Q(1)

0 f being identically zero. We also use Q(d1)×Q(d2)g to denote the
product of the multivariate quadratures Q(d1) and Q(d2), the first of which integrates
over the first d1 arguments and the second, Qd2 , over the last d2 arguments of a
multivariate function g. Then the d-dimensional lth order of the sparse Smolyak
quadrature, denoted by Q(d)

l f , is defined recursively as

Q(d)
l f =

l∑
i=1

(
Q(1)

i −Q(1)
i−1

)
×Q(d−1)

l−i+1 f . (2.19)

With this multidimensional quadrature, we can approximate the inner product of
the source term ωF by expressing it as a function of m(ξ) and n(ξ) obtained from
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the polynomial expansions, (2.14) and (2.15). This gives ωF(ξ), and the inner product
〈ωF(ξ) |Ψk(ξ)〉 is approximated by

〈ωF(ξ) |Ψk(ξ)〉 ≈Q(d)
l

(
ωF(ξ)Ψk(ξ)

)
, (2.20)

where the lth-order quadrature Q(d)
l is used to integrate over the d-dimensional sample

space variable ξ .
Use of the Smolyak quadrature yields, for smooth functions f , exponential

convergence of the numerical error with respect to the order l of the quadrature
Q(d)

l f . Furthermore, since it is based on only those points of the d-dimensional
product of the univariate quadratures Q(1)

l which yield product quadratures of order l
or less (whereas a standard d-dimensional product of the univariate quadratures yields
product quadratures of order ld), the Smolyak quadrature Q(d)

l f involves evaluation at
considerably fewer points than does a simple product of univariate quadratures. To
match the accuracy of the Smolyak quadrature to that of the PCE, we use the same
order for both: for the seventh-order, five-dimensional case considered below, a simple
product of the seventh-order, 15-point nested univariate quadratures would require
155 = 759 375 points, whereas the Smolyak quadrature given by (2.19) requires only
1743 points.

3. Simulation
Combustion instability was studied over a range of operating conditions for a

10-injector design by Sirignano & Popov (2013). With varying mixture ratio or mass
flow, three zones corresponding to different types of stability were found: stable
operation under any perturbation; linear (spontaneous) instability with infinitesimal
perturbation (noise), resulting in a nonlinear limit-cycle oscillation; and an operating
zone where triggering occurs with a disturbance above a threshold magnitude, leading
to a nonlinear limit-cycle oscillation, while a perturbation below the threshold decays.
Here, our stochastic analysis will focus on this last operating regime where triggering
action is possible.

The present simulation uses a cylindrical chamber of axial length L = 0.5 m and
radius R= 0.14 m, with 10 injectors: one at the centre of the chamber, three at r =
R/2, evenly spaced at angles of 2π/3, and six at r = 3R/4, evenly spaced at angles
of π/3. Each injector consists of two concentric pipes: the inner one, with a radius
of 0.898 cm, serves as the oxidizer inlet, and the outer one, with a radius of 1.1 cm,
serves as the fuel inlet, allowing fuel and oxidizer inflow in stoichiometric proportions.
The injector configuration is shown in figure 1(a).

The fuel and oxidizer in the present simulation are, respectively, gaseous-phase
methane and oxygen, entering the combustion chamber at 400 K with an axial
velocity of 200 m s−1. Using a value of 0.115 for the ratio between the nozzle
throat area and the combustion chamber cross-sectional area results in a steady-state
operational pressure of 200 atm and a steady-state temperature of 2000 K.

The solution is found in two forms and comparisons are made. Equations (2.16)
and (2.17) for the coefficients of the Legendre polynomials for the PCE approach
are numerically integrated. Then the primitive variables, e.g. pressure and velocity,
are constructed. Equations (2.1)–(2.9), the original PDEs governing the evolution of
the primitive variables, are also integrated directly, following Sirignano & Popov
(2013). The calculations are performed for a reasonable sampling over the ranges
of the several random variables. Comparisons of the two results are made for
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FIGURE 1. (Colour online) Illustration of the two types of grid used in the computational
procedure. (a) The pressure and velocity equations are solved on a polar grid in r–θ
coordinates. (b) The injector grids are axisymmetric cylindrical grids in x–η coordinates.

both the primitive variables and the probability functions that result from certain
integrations over the sample sets. The direct solution of the original PDEs is
sufficiently independent of mesh size and time step to be considered the ‘exact
solution’ for benchmarking the PCE results. Errors in the PCE calculation of the
primitive variables are examined for various choices of truncation of the PCE series.
In addition, the direct simulations of the original PDEs are used for the realizations in
a Monte Carlo simulation, which are compared to the efficiencies, i.e. computational
cost versus accuracy, of the two approaches in prediction of the probabilities.

Some description of the physical behaviour, obtained using direct simulation of the
original evolution equations, follows. Then, in §§ 3.1 and 3.2, two types of pulses
examined for the calculations of the probability of triggering action are discussed.

The evolution equations for pressure and velocity, (2.1), (2.5) and (2.6), are solved
using a second-order finite-difference procedure on a uniform polar grid, with the
radial and azimuthal components of velocity staggered with respect to pressure. The
evolution equations (2.7)–(2.9) for the scalars α, β and YF are solved on 10 disjoint
two-dimensional cylindrical grids (neglecting field variations in the azimuthal variable),
each co-axial with the axis of the respective injector. For more details on the solution
procedure for the deterministic system, the reader is referred to Sirignano & Popov
(2013).

With this set-up for a deterministic simulation with known initial conditions, a stable
limit cycle was found in the form of a travelling first tangential mode of peak-to-
peak amplitude 155 atm. Similarly, the triggering initial perturbation is a travelling
first tangential mode of amplitude above 20 atm; for initial perturbations of smaller
amplitude, decay towards the steady-state operational conditions was found. This is
illustrated in figure 2, which shows pressure contour plots for a first tangential mode
perturbation, together with the final pressure field once a limit cycle has developed.

Figure 3 plots the final amplitude of the solution against the amplitude of the initial
perturbation. A triggered instability can be observed, with solutions of amplitude
above 20 atm growing to 155 atm and solutions of peak-to-peak amplitude below
20 atm decaying to zero.
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FIGURE 2. (Colour online) Pressure contours for (a) the initial disturbance and (b) the
final spinning wave limit cycle.
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FIGURE 3. Final peak-to-peak amplitude, 1pF, versus the initial amplitude of the
perturbation, 1p0.

Figure 4(a) shows phase plots of pressure and its time derivative for the point
on the wall at θ = 3π/4. Two solutions, with initial amplitudes 18 and 140 atm,
are presented. The solution with initial amplitude above 20 atm is attracted to a
stable limit cycle, whereas the solution with initial amplitude below 20 atm decays.
An unstable limit cycle is present in the region between 18 and 22 atm. This is
an example of a linearly stable system with a triggered nonlinear instability. When
the injector mass flows of both fuel and oxidizer are increased, the LPRE becomes
unconditionally unstable (figure 4b), with every perturbation growing to a limit cycle.
On the other hand, for a very lean fuel-to-oxidizer mass flow ratio (figure 4c), the
system becomes unconditionally stable, with all perturbations decaying towards the
steady-state operating conditions.

For this configuration, it was shown that the same nonlinear limit-cycle oscillation
could result from different disturbances (Sirignano & Popov 2013). An initial pressure
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FIGURE 4. (Colour online) Phase plots of ∂p/∂t versus p at the position on the
chamber wall where θ = 3π/4, for three possible cases. (a) Present configuration, with
a stable equilibrium at the operating conditions and a triggered instability: a solution with
initial amplitude below 20 atm decays to the equilibrium, whereas a solution with initial
amplitude above 20 atm is attracted to a stable limit cycle. (b) A configuration with
increased injector mass flow, which is unconditionally unstable: any perturbation grows
to a limit cycle. (c) A configuration with a lean fuel-to-oxidizer mass flow, which is
unconditionally stable: every perturbation decays to the steady state.

variation identical to the linear profile for the first tangential acoustic mode could
trigger the 155 atm peak-to-peak limit-cycle amplitude if that initial amplitude were
greater than 20 atm. A forcing function consisting of a Gaussian travelling pulse
applied for an extremely brief period (a numerical approximation to a delta function)
with magnitude greater than 40 atm could also result in the same 155 atm limit
cycle.

If the orientation of the pulse’s direction of travel were modified, changes in the
limit cycle could result. For example, Sirignano & Popov (2013) showed that a first
radial mode could superimpose on the first tangential mode of oscillation. Thus, the
details of the limit-cycle behaviour can have some dependence on the disturbance.
Therefore, the limit-cycle parameters are random variables as well, inasmuch as they
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FIGURE 5. (Colour online) Critical amplitude required for triggering of the first tangential
mode limit cycle by a single pulse.

are non-trivial functions of the disturbance. Nevertheless, a given disturbance produces
in a deterministic fashion a unique limit cycle.

A set of deterministic calculations determines that for a single pressure pulse of
width WG, initially travelling parallel to the chamber wall in the azimuthal direction,
there exists a critical pressure amplitude AG, below which the pulse will decay and
above which it will trigger growth to the spinning first tangential limit cycle of
amplitude 155 atm found in Sirignano & Popov (2013). The value of this critical
amplitude is plotted in figure 5 as a function of the pulse width.

Figure 5 shows that for most of the parameter range (from 2 to 8 cm) including
the pulse widths of interest, the critical value of AG scales as W−1

G , i.e. the energy of
the pulse at critical amplitude is independent of WG. Here, we shall consider a pair
of pulses whose energy is half the critical energy for a single pulse and examine the
conditions under which the combination of these pulses triggers growth to the limit
cycle.

In this study, we explore a parameter space of stochastic, localized pressure
perturbations of two different kinds: Gaussian travelling pulses and dipoles.

3.1. A pair of travelling Gaussian pulses
This first set of simulations determines a combination of two travelling pulses that can
trigger growth to a limit cycle, although each pulse by itself is too weak to trigger a
limit-cycle oscillation. The initial pressure pulse added to the steady-state pressure of
200 atm has the form

p(r, θ, t= 0)= q(r, θ, t= 0), (3.1)
dp
dt
(r, θ, t= 0)= dq

dt
(r, θ, t= 0), (3.2)

q(r, θ, t)= AG exp
(
−‖z− z1(t)‖2

w2
G/2

)
, (3.3)
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with

z= r cos(θ)i + r sin(θ) j, (3.4)
z1(t)= (r1 cos(θ1)− a0t sin(θ1 + θ2)) i + (r1 sin(θ1)+ a0t cos(θ1 + θ2)) j, (3.5)

where r1, θ1 and θ2 are parameters governing the initial location and direction of travel,
with their values set to r1 = 0.09 m, θ1 = π and θ2 = 0. Thus, the first pulse has
amplitude AG and width wG, and it is initially travelling counterclockwise at the speed
of sound. We shall perform two separate PCE simulations for two sets of values for
the parameters AG and wG: the first has wG= 3.5 cm and AG= 50 atm, and the second
has wG = 2.5 cm and AG = 70 atm. For both of these parameter sets, the amplitude
of the first pulse on its own is insufficient to cause a limit cycle to develop; the
critical amplitude for a single pulsed trigger is 70 atm for a pulse of width 3.5 cm and
98 atm for a pulse of width 2.5 cm. Therefore, this set of simulations will lead to the
development of a limit cycle only when the second pulse, to be described presently,
reinforces the first one.

The second pulse, with the same form as the first pulse, is introduced with a time
delay of TS = ξ1 × 6× 10−3 s after the first pulse and is governed by (3.3), with the
parameters in (3.5) defined by r1 = ξ2R, θ1 =−π+ 2πξ3 and θ2 = 2πξ4. The random
variables ξ1, . . . , ξ4 are independent and uniformly distributed on the interval [0, 1];
accordingly, to ensure spectral convergence of the error in the PCE approximation of
(2.16), we choose Ψk(ξ) to be the Legendre polynomials of degree up to seven in
ξ1, . . . , ξ4.

All of the uncertainty in this simulation is contained in the timing, location and
direction of travel of the second pulse. This is intentional: in order to keep the
pressure field smooth in time, the PCE simulation starts with the introduction of the
second pulse at time TS, with the initial fields caused by the first pulse up to that time
being obtained from a pre-computed deterministic simulation. The PCE simulation
is then run from time TS until time TF = TS + 6 × 10−3 s, which corresponds to
approximately 12 periods of the chamber’s first tangential mode; the period of this
mode is equal to τF = 4.87× 10−4 s.

3.2. A pressure dipole
Using the same combustion chamber conditions as for the two-pulse PCE calculations,
we also perform simulations for a pressure dipole defined as

p(x, y, t)t<TD
= −AD × exp

(
−
( r1

0.0025 m

)2
)
× sin

(
2πt
τD

)
+AD × exp

(
−
( r2

0.0025 m

)2
)
× sin

(
2πt
τD

)
, (3.6)

r1 =
((

x+ rD + 0.005 m× sin(θD)
)2 + (y− 0.005 m× cos(θD)

)2
)1/2
, (3.7)

r2 =
((

x+ rD − 0.005 m× sin(θD)
)2 + (y+ 0.005 m× cos(θD)

)2
)1/2
, (3.8)

where the dipole amplitude is AD = ξ1 × 100 atm, the period of the dipole is τD =
(0.3 + 1.4ξ2)τF, the duration for the dipole perturbation is TD = 2ξ3 × τF, the dipole
location is prescribed by rD = 0.14 m× ξ4, and θD = π× ξ5. Similar to the previous
subsection, ξ1, . . . , ξ5 are independent and uniformly distributed on [0, 1], and we use
Legendre polynomials of up to seventh degree in ξ1, . . . , ξ5 as the PCE basis functions
Ψk (ξ). Again, the simulation runs for 6× 10−3 s, or approximately 12 periods of the
first tangential mode.
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4. Results
In this section, we explore perturbations that trigger the 155 atm limit cycle seen

previously. In the deterministic study of this configuration (Sirignano & Popov 2013),
the first tangential mode limit cycle was discovered when a first tangential mode
of sufficient amplitude was input as the initial condition. On the other hand, initial
perturbations of lower magnitude decayed with increasing time in the simulations
performed by Sirignano & Popov (2013). Therefore, a reasonable way of deciding
whether a solution will decay or develop towards a limit-cycle oscillation for a given
value of ξ is to test whether the peak-to-peak amplitude of the pressure field at
the end of the simulation is above half of the deterministic limit-cycle amplitude.
Specifically, for a given ξ , we define I(ξ) by the formula

M(ξ)=max
r,θ

(
max

TF>t>TF−τF
p (r, θ, t, ξ)− min

TF>t>TF−τF
p (r, θ, t, ξ)

)
, (4.1)

I(ξ)=
{

1 for M(ξ) > 77.5 atm,
0 for M(ξ)6 77.5 atm.

(4.2)

In the definition of M(ξ), we take the maxima and minima over all r, θ and over
all t ∈ [TF − τ1, TF]. We choose this interval, rather than just fixing t= TF, to ensure
that a meaningful value of M(ξ) is obtained in the case where the limit cycle for a
given ξ is a standing wave with oscillating peak-to-peak magnitude.

The random variable I(ξ) can be viewed as an indicator function for the cases
where the chamber perturbation grows to a first-tangential-mode limit cycle. This is
confirmed via examination of the (r, θ) spectrum of 10 000 solutions for random ξ
with I(ξ)= 1: in all cases, a minimum of 82 % of the energy of p(r, θ, t> TF − τ1)
is contained in the first tangential mode of the (r, θ) spectrum. For these 10 000
solutions, the sensitivity of I(ξ) is also tested for the choice of the 77.5 atm threshold
and the length of 12 cycles for the time window of the simulation. There is some,
but not great, sensitivity to these two parameters due to the fact that the finite
simulation time means that marginal cases in the sample space have not converged
to their ω-set by the end of the simulation. In particular, for those of the 10 000
simulations which yield marginal values of M(ξ) ∈ (35, 120) atm, the simulation
is run for 10 times the regular period (i.e. 120 cycles of oscillation), which is
sufficient for all cases to either decay or get attracted to the limit cycle of 155 atm.
A simulation is then deemed misclassified based on the criterion of (4.1) and (4.2) if
I(ξ)= 1 for a decaying perturbation (false positive) or if I(ξ)= 0 for a perturbation
which grows to the limit cycle (false negative). The overall fraction of misclassified
simulations among the 10 000 is 0.83 % (all false negatives), which is small enough
to justify the effectiveness of the criterion defined in (4.2), albeit the threshold choice
could be further optimized. These findings support the analysis approach for the
combustion instability considered, and although, in principle, it can be useful for
other applications, no claim is made about its universality.

We examine the marginal probability density functions (PDFs) of the random
variable I(ξ) in one or two of the random variables ξi, defined as follows:

IΞi(ξi)≡
∫

I(ξ) dξ1 · · · dξi−1 dξi+1 · · · dξn, (4.3)

IΞiΞj(ξi, ξj)≡
∫

I(ξ) dξ1 · · · dξi−1 dξi+1 · · · d ξj−1dξj+1 · · · dξn, (4.4)
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FIGURE 6. (Colour online) (a) Maximal error in the computed value of IΞ1(ξ1) as a
function of the grid cell size. (b) Probability of growth as a function of the time delay
between the two pulses.

where n is the number of random variables and i< j. Note that the above equation is
a valid definition of a marginal PDF, as the sample space in the present study is an
n-dimensional unit cube with a uniform probability measure. The integrations in (4.3)
and (4.4) are performed numerically, via a Smolyak grid quadrature similar to the one
used in the evaluation of the nonlinear terms of the PCE evolution equation.

Before presenting the PCE results, we verify the grid and time-step convergence
of the PDE solution, for different grid and time-step resolutions and the same
seventh-degree PCE; by doing this, we shall establish that the numerical errors due
to the grid size and time step are small compared with the PCE approximation
errors. Setting ξ2 = 0.5 and ξ3 = 0.25 for the test case described in § 3.2, we have a
computationally cheaper test case, with a three-dimensional sample space, on which a
set of calculations are made using grids of size 12× 25, 25× 50, 50× 100, 75× 150
and 150× 300 in the r and θ directions. The time step is kept proportional to the
grid size, with 1t = 7.5 × 10−7 s for the 50× 100 r–θ grid. Similarly, the size of
each of the 10 injector grids is kept proportional to the size of the r–θ grid: for the
50× 100 r–θ grid, the size of the x–η injector grid is 40× 40. Figure 6 plots the
maximal error in the calculated value for IΞ1(ξ1) as a function of the grid spacing in
the θ direction; the finest grid solution is used as the exact answer.

The solutions are seen to converge in a second-order fashion, with the 50× 100
solution (which is used in the rest of the paper) yielding a maximal error of 0.002 in
IΞ1(ξ1), well below the PCE approximation error, which is discussed in the remainder
of this section.

4.1. Results for a pair of subthreshold travelling pulses
We first examine the effect of the time delay between the two pulses. Two sets of
calculations are performed using pulses of width 2.5 and 3.5 cm with the same L2

norm, equal to 0.707 of the critical value. Figure 6 plots, for these two cases, the
value of the marginal PDF IΞ1(ξ1) as a function of the time delay corresponding to a
given value of ξ1, which is the probability of growth as a function of the time delay.
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FIGURE 7. (Colour online) (a) Probability of growth as a function of the radial position
of the second pulse. (b) Probability of growth as a function of the direction of travel of
the second pulse.

The results are fairly intuitive, with the probability of growth decreasing as the time
delay increases, due to the fact that the first pulse is subcritical and decays on its own.
For the test case in which the two pulses have the same L2 norm but a lower width of
2.5 cm, the marginal PDF and hence the overall probability of growth to a limit cycle
are higher. In this and the following plots, Monte Carlo 95 % confidence intervals for
the average value of the marginal PDF in the 10 bins are superimposed on the PCE
curves, as a means of validating the accuracy of the PCE results. Later, a comparison
of computational costs of the Monte Carlo and PCE methods will be made.

Figure 7 presents the probability of growth as a function of the radial location
of the second pulse, which corresponds to the marginal PDF of IΞ2(ξ2). The largest
probability is observed near a radial location of r= 0.1 m for the second pulse, with a
drop-off to zero for values at the low and high ends of the interval. For low values of
r, this can be explained by the fact that the second pulse passes close to the centre of
the chamber, which tends to excite a standing wave instability, whereas the first pulse,
starting out near the wall and moving tangentially, excites a spinning wave instability.

For high values of the initial radial location of the second pulse, the drop in
growth probability can be explained by the fact that part of the Gaussian profile of
this pulse lies outside the domain, and so the overall L2 norm of the second pulse is
reduced; this is also the reason for the overall larger probability of growth for pulses
of width 2.5 cm, as they are left without truncation for larger values of r. While the
energy of the pulse is reduced, the truncated Gaussian function is still smooth in the
computational domain, and hence the PCE smoothness convergence conditions are
satisfied.

Figure 7 also presents the probability of growth as a function of the direction of
travel of the second pulse initially, counterclockwise relative to the unit azimuthal
vector at the initial location. The highest probability of growth occurs when the
second pulse is travelling tangentially in the counterclockwise direction, similarly to
the first pulse, with a lower probability at π, when the two are travelling in opposite
tangential directions, and a drop to zero at π/2 and 3π/2, where the second pulse is
travelling radially and passes close to the centre of the domain. That is, since both
pulses have subthreshold magnitudes, in a pair they can only cause growth when
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FIGURE 8. (Colour online) Comparison of the pressure versus time curves for a fixed
point at r=R, θ = 3π/4 generated by the sixth- and seventh-degree PCE simulations with
a deterministic solution of the original differential equations for the same value of ξ : (a) a
solution attracted to a limit cycle; (b) a decaying solution.

there is considerable overlap in their trajectories of travel. Thus, since the first pulse
travels in a tangential direction, the second pulse is more likely to lead to a limit
cycle when it also travels in a tangential direction.

4.2. Results for an oscillating dipole
Prior to analysis of the probability of growth, we validate the PCE simulation by
comparing the calculated PCE pressure at r=R, θ = 3π/4 with the pressure calculated
from a deterministic simulation for the same value of ξ . Figure 8 shows results for
two cases, one in which there is growth to the limit cycle and one in which there is
decay. As can be seen, the sixth- and seventh-degree PCE simulations have sufficiently
converged to the true solution.

For a more general analysis over the entire sample space, we calculate, for each
of the 10 000 values of ξ corresponding to the Monte Carlo solutions, the average
difference between the PCE solution for that value of ξ and the Monte Carlo sample.
Figure 9 plots, for the PCE simulations of degree 1–7, the mean L2 error at the end
of the simulation, defined as

εL2 =Meanξ

〈(∫ (
pPCE(r, θ, t, ξ)− p(r, θ, t, ξ)

)2
r dr dθ dt

)1/2

(∫
(p(r, θ, t, ξ)− 200 atm)2 r dr dθ dt

)1/2

〉
, (4.5)

where pPCE(r, θ, t, ξ) and p(r, θ, t, ξ) are, respectively, the PCE solution and the exact
solution for pressure at a given value of ξ . Also plotted in that figure is the fraction
of Monte Carlo samples in which the value of I(ξ) from the PCE simulation differs
from the value obtained using the exact solution. With increasing PCE simulation
degree, convergence with respect to both of these measures of error can be observed
in figure 9.

In addition, figure 9 presents the probability of growth as a function of the
dipole peak-to-peak magnitude. As can be expected, for small dipole magnitudes the
probability of growth is small. We identify a region of high sensitivity between 40
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FIGURE 9. (Colour online) (a) Convergence plots for increasing PCE degree, based on the
average error over the values of ξ for the 10 000 Monte Carlo samples: both the error
with respect to the L2 norm of the difference between the PCE and the exact solution
(diamonds) and the error in the calculation of I(ξ) are shown, normalized respectively;
the bars indicate the variance in the L2 error over the samples. (b) Probability of growth
as a function of the dipole magnitude; the bars indicate the Monte Carlo 95 % confidence
intervals.

and 60 atm, in which the probability of growth increases five-fold. Above 60 atm the
marginal PDF curve levels off to a value of approximately 0.28.

Similarly to the previous subsection, Monte Carlo confidence intervals are calculated
for the overall probability of growth when the abscissa variable (in this case the dipole
magnitude) is in each of 10 bins uniformly dividing its range. As can be seen in
this figure and the next four, the Monte Carlo confidence intervals overlap the PCE
marginal probability curves.

For this case, two PCE simulations are performed, one with polynomial terms
of up to seventh degree (solid line) and one with polynomial terms of up to sixth
degree (dashed line). Figures 9–11 show that the difference between the sixth- and
seventh-degree PCE simulations is small; this indicates that the PCE truncation error
for the seventh-degree simulation, which is comparable in magnitude, is much smaller
than the width of the confidence intervals obtained from the traditional Monte Carlo
approach.

Figure 10(a) presents the probability of growth as a function of the ratio τD/τF
between the dipole period τD and the period of the first tangential acoustic mode, τF.
The results indicate a high probability of growth near τD/τF = 1; this ratio decreases
when τD is considerably smaller or greater than τF. Thus, the system is sensitive
to the frequency of the perturbation, and the probability of triggering is small for
perturbations whose frequency differs considerably from that of the first tangential
mode. This result is to be expected because instability should be more likely if the
pulsing is commensurate with the character of the resonant modes.

Figure 10(b) shows the probability of growth as a function of TD/τF, the dipole
duration normalized by the period of the first tangential mode. A distinction is made
between standing and spinning first tangential mode limit cycles. The former are
excited when TD is an even positive multiple of τF/2, and the latter when TD is an
odd positive multiple of τF/2. This is caused by a tendency of the dipole to excite,
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FIGURE 10. (Colour online) (a) Probability of growth as a function of the ratio between
the dipole period and the period of the first tangential mode. (b) Probability of growth as
a function of the dipole duration, normalized by the period of the first tangential mode.

over each half-period, a spinning wave travelling in the direction from positive to
negative pressure, so that for TD≈ τF and TD≈ 2τF we get, respectively, one pair and
two pairs of spinning waves travelling in opposite directions, resulting in a standing
wave. Another interesting feature of the marginal PDFs shown in figure 10 is that
standing wave limit cycles occur with greater probability, since a spinning wave is
most highly excited by a dipole that is oriented tangentially and located near the edge
of the domain. This result might change if the combustion process were sensitive to
transverse velocity as well as pressure.

Figure 11(a) displays the probability of growth as a function of the dipole radial
location. This probability increases for radial locations that are closer to the chamber
wall. Similar to the above discussion, this occurs because either a spinning wave or a
standing wave limit cycle may be excited. The former can only be excited by a dipole
whose axis is oriented tangentially, for which it is necessary that the dipole location
be away from the centre. On the other hand, a standing wave limit cycle can develop
from dipoles of both radial and tangential orientations, and thus the probability of
excitation of a limit cycle is greater for dipoles closer to the chamber wall.

The same basic mechanism explains the results shown in figure 11(b), which
presents the probability of growth as a function of the dipole orientation, i.e. its
angle with respect to the chamber tangent. The triggering probability is greater for
angles close to 0 and π, which allow for the excitation of both standing and spinning
waves, with the dipole’s duration making the difference between a standing and a
spinning wave. For dipole angles close to π/2, however, only standing waves are
possible and thus the probability is lower.

Figures 12–13 examine the joint dependence on two of the random variables of the
probability of growth. Figure 12(a) presents the probability of growth as a function of
both the position and the orientation of the dipole. Again, we see a higher probability
of growth for tangentially oriented dipoles and dipoles away from the domain’s
centre. For constant angular orientation near π/2, i.e. a radially oriented dipole, the
probability of growth does not increase significantly with increasing radial location;
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FIGURE 11. (Colour online) (a) Probability of growth as a function of the dipole radial
location. (b) Probability of growth as a function of the dipole orientation.
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FIGURE 12. (Colour online) (a) Probability of growth as a function of the radial position
and orientation of the dipole. (b) Probability of growth as a function of the dipole
orientation and the ratio between the dipole period and that of the first tangential acoustic
mode.

however, for an angular orientation near 0 or π, the probability increases considerably
with increasing radial location. This occurs because these angular orientations allow
for the excitation of a spinning wave limit cycle which, as previously mentioned,
requires that the dipole be situated away from the centre of the chamber. For radial
positions close to the centre, the plot shows that the results are less sensitive to the
orientation, due to a high degree of rotational symmetry.

Figure 12(b) shows that there is no significant interaction between the dipole
orientation and the ratio of the dipole’s period to the period of the first tangential
acoustic mode: the joint probability is closely approximated by the product of the
one-dimensional marginal probabilities from figures 10 and 11. Since the dipole
orientation affects the probability of growth via the excitation of either spinning or
standing waves, this near-independence between orientation and period implies that
the excitation of both spinning and standing waves is equally sensitive to the dipole
period.
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FIGURE 13. (Colour online) Probability of growth as a function of the dipole magnitude
and: (a) the ratio of the dipole period to the period of the first tangential mode; (b) the
dipole’s radial location; and (c) the dipole’s orientation.

Figure 13 plots the joint probabilities for dipole magnitude and three other
parameters, namely the period, radial location and orientation of the dipole. All three
plots exhibit the same behaviour, in that for each given value of the dipole period,
radial location and orientation, there is a critical value for the dipole magnitude
below which the probability of growth is zero. This result is due to the combustion
chamber being linearly stable, so that there is a global minimum for the dipole
magnitude below which perturbations decay regardless of their other characteristics,
such as period and location. Additionally, figure 13 shows that for fixed values of the
dipole’s period, location and orientation, the probability of growth levels off above
a certain value (approximately 60 atm) of the dipole magnitude. This indicates that
above that magnitude, the difference between growth and decay is mostly due to the
geometric and time parameters.

4.3. Computational cost
The advantage of the stochastic Galerkin procedure over a standard Monte Carlo
approach to solving (2.12) and (2.13) lies in the fact that, for appropriately chosen
polynomials Ψk(ξ) (Legendre polynomials in the present simulation, due to ξ
being uniformly distributed), the error in the approximation of (2.16) and (2.17)
exhibits spectral convergence with respect to l (exponential convergence for solutions
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and PCE approaches, based on the maximal error in the computed marginal probability
of growth.

that are smooth in the uncertain parameters); see Xiu & Karniadakis (2002). The
computational cost is modelled as being proportional to the total number of fields,
which in the present case is 33× (P+ 1)= 33× (n+ l)!/(n! l!). Therefore, this cost
increases (for large values of l) as ln, i.e. polynomially in l. On the other hand, a
Monte Carlo approximation with N samples contains a random error proportional
to N−1/2, from which it follows that PCE will always have better computational
accuracy than Monte Carlo simulation above a certain polynomial degree at the same
computational cost. For the low-dimensional sample spaces used in the present study
(either four or five dimensions), this level is within computing capabilities, as we
shall soon see.

The computational cost of the Monte Carlo simulation, which involves 10 000
samples, is 186 CPU hours for the dipole simulations, whereas the cost of the
seventh-degree PCE simulations is 272 CPU hours, and for the sixth-degree PCE
simulations it is 109 CPU hours. While this may at first glance suggest that the
Monte Carlo approach is more efficient, we note that the width of the Monte
Carlo confidence intervals at the high-probability regions of the sample space is
approximately 0.05, whereas the estimated error in the PCE-calculated marginal PDFs
(from the difference between the seventh- and sixth-degree PCE dipole simulations)
is less than 0.01 even at the regions of greatest sensitivity of the conditional PDFs.

Figure 14 is a computational efficiency plot for the PCE simulation: solutions
with polynomial degrees of 1–5 have been computed in addition to the already
discussed solutions of sixth and seventh degree, and the accuracy of the first- to
sixth-degree solutions has been calculated with respect to the solution of degree
seven. The machine used for all calculations was a 2.66 GHz Intel Q6700 quad-core
workstation, running in serial. While the absolute computational cost will vary for
different machines, the relative computational cost of the PCE and Monte Carlo
procedures is expected to remain the same.
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The error in the PCE simulation of degree five is considerable, almost as high
as that of the Monte Carlo approximation, and higher by a factor of six than the
error of the sixth-degree PCE simulation. This is the reason why the results from
the sixth- and seventh-degree PCE simulations are used in this section to analyse the
stability of the combustion chamber. A comparison is made with the 10 000-sample
Monte Carlo simulation (for which the error is estimated as the width of the 95 %
confidence intervals) and with the projected accuracy and computational cost of Monte
Carlo simulations with a different number of samples. Figure 14 shows that, while the
PCE and Monte Carlo approaches have similar computational efficiency for high error
levels, PCE is considerably more efficient at lower error tolerances. The Monte Carlo
statistical error converges as the inverse square root of the number of samples. Thus,
to achieve the same accuracy as the sixth-degree PCE simulation via a Monte Carlo
simulation would involve a computational cost which is approximately 17 times that
of the seventh-degree PCE simulation.

Modelling the computational cost of the n-dimensional lth-order PCE expansion to
increase proportionally to the number of its coefficients, i.e. as (n+ l)!/(n! l!)+ 1, it
is estimated that the PCE method would be more computationally efficient than the
Monte Carlo approach up to nine-dimensional sample spaces, for the level of accuracy
exhibited by the seventh-degree PCE simulations. A nine-dimensional seventh-order
PCE simulation would then take 3900 CPU hours, whereas a Monte Carlo simulation
with the 250 000 samples needed to achieve the same accuracy would take 4600 CPU
hours.

5. Conclusions

A nonlinear wave model has been used to predict the triggering of transverse
mode combustion instability in a liquid-propellant rocket engine. A combustion
chamber with 10 co-axial injectors of oxygen and methane gas has been selected for
detailed computations. For certain operating conditions, i.e. mass flow, mean chamber
pressure and propellant mixture ratio, small disturbances to the steady-state operation
of this system will decay with time, but disturbances above some threshold level
will develop towards a limit-cycle oscillation. For operation in this bi-stable domain,
random disturbances are applied and the probability of development towards the limit
cycle is estimated using the PCE method.

The PCE stochastic approach for analysing the sensitivity of processes in a
continuous medium with respect to uncertainty has been well established through
several publications. While the PCE method has been used before to study nonlinear
oscillations in lumped dynamical systems, to our knowledge, the first study of
nonlinear oscillations in a distributed parameter system and, in particular, for a
combustor is presented here. Favourable comparisons of the truncated PCEs for the
physical variables, e.g. oscillating pressure, are made with the direct simulation of the
original governing partial differential equations. The long-time PCE solution is shown
to converge sufficiently rapidly and to produce an approximation capable of predicting
a limit cycle accurately. Thus, the PCE method works well in giving an accurate and
relatively inexpensive solution. The PCE method can produce comparable accuracy to
the Monte Carlo method with more than one order of magnitude less computational
cost.

The random disturbances are applied as forcing functions for brief durations. Two
types of these functions are considered that provide an orientation as well as a
magnitude: a travelling Gaussian pulse and an oscillating dipole. For the travelling
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Gaussian pulse, it is shown that the two descriptive parameters can conveniently be
collapsed to one parameter over a range of values. Two sequential Gaussian pulses
with small difference in their orientations are able to trigger instability for a case
where a single pulse falls below the threshold value. The parameters describing the
pulses in our analysis are random variables. For both types of pulse, magnitude,
orientation and location are defined as random variables. In addition, the repeated
Gaussian pulse uses separations in space and time, and the dipole pulse has duration
and frequency as random variables. The outcome of the pulse on the steady-state
engine operation is the stochastic variable to be determined: stable recovery of the
steady state or limit-cycle oscillation. The nature of the limit cycle can change for
different random disturbances.

Sensitivity of the probability of triggering to each of the random variables is
demonstrated. In certain situations where the energy of a pulse is insufficient to
trigger a pulse, repeated pulsing of the same type closely spaced in time and location
to the first pulse can trigger instability.

For the dipole simulation, the probability of growth is greatest when the dipole’s
frequency is close to that of the first tangential mode. The probability of growth
increases monotonically with the dipole magnitude, with the greatest sensitivity being
found in the 40–60 atm interval: below 40 atm the probability is almost zero, and
it does not increase considerably above 60 atm. When the period of the dipole
perturbation is close to an odd multiple of τF/2, a tangential travelling wave limit
cycle is triggered, and when the period is close to an even multiple of τF/2, a
standing wave limit cycle is triggered. Higher probability of growth is observed for
dipoles located near the edge of the chamber and oriented tangentially, which are
conditions necessary for the excitation of a spinning wave.

A foundation has been given for two future analytical developments. One is the
replacement of abstract random disturbances by specific physical and chemical random
behaviours, e.g. dysfunction of propellant injector flows or a rogue vortex structure
perturbing the mixture ratio distribution, burning rate or allowed flow through the
choked exit nozzle. The second possible extension of this work is the development of
passive and active controls to reduce the likelihood of undesired triggered instabilities.
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