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Triple flame: Inherent asymmetries and pentasectional character
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A two-dimensional triple-flame numerical model of a laminar combustion process re-
flects flame asymmetric structural features that other analytical models do not generate.
It reveals the pentasectional character of the triple flame, composed of the central
pure diffusion-flame branch and the fuel-rich and fuel-lean branches, each of which
is divided into two sections: a near-stoichiometric section and a previously unreported
near-flammability-limits section with combined diffusion and premixed character. Re-
sults include propagation velocity, fuel and oxidiser mass fractions, temperature and
reaction rates. Realistic stoichiometric ratios and reaction orders match experimental
planar flame characteristics. Constant density, a one-step reaction, and a mixture fraction
gradient at the inlet as the simulation parameter are imposed. The upstream equivalence
ratio or the upstream reactant mass fractions are linear or hyperbolic functions of the
transverse coordinate. The use here of experimental kinetics data differs from previ-
ous analytical works and results in flame asymmetry and different flammability limits.
Upstream mixture composition gradient affects propagation velocity, flame curvature,
diffusion flame reaction rate, and flammability limits. Flammability limits extend be-
yond those of a planar flame due to transverse heat and mass diffusion causing the
pentasectional character.

Keywords: triple flame; edge flame; diffusion flame; premixed combustion; partially
premixed combustion

Nomenclature

A Pre-exponential factor
cp Specific heat under constant pressure
D Mass diffusivity

Ea Activation energy
[F], [O] Fuel and Oxygen molar density

h Specific enthalpy
L Domain length

Le Lewis number
m, n Reaction orders

P Pressure
Q Fuel heat of combustion

Ru Universal gas constant
t Time

T Temperature
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U Upstream velocity
Uo Steady-state upstream velocity
W Domain width

x, y Cartesian coordinates
YF Fuel mass fraction
YO Oxygen mass fraction

β1, β2 Conserved Shvab–Zel’dovich variables
�t Time step

�x, �y Distance between nodes in x and y
ν Fuel-to-oxygen mass stoichiometric ratio
ρ Mixture density
� Equivalence ratio
ω̇ Fuel reaction rate

1. Introduction

Triple flames have been described as tri-brachial structures consisting of a fuel-rich pre-
mixed flame, a fuel-lean premixed flame and a diffusion flame [1,2]. The two premixed
flames form a curved flame front followed by a trailing edge that constitutes the body of
the diffusion flame. The diffusion flame starts at the point where the two premixed flames
meet, where the inflowing mixture is at stoichiometric proportions. Such flames, also called
edge flames, appear in flows characterised by gradients of concentrations of the reactants
and they have been studied during the past decades (see Section 2).

Many combustion processes rely on the burning of gaseous reactants that initially flow
separately and subsequently form a mixing layer, generally with mixing beginning upon
their entering the combustion chamber. They react within thin reaction zones under space-
and time-varying reactant concentration conditions. Such reaction zones are located at the
stoichiometric surfaces and form a diffusion flame. In non-premixed turbulent conditions,
such diffusion flames could be stretched and quenched locally due to velocity fluctuations,
when the heat diffusing away from the reaction zone is not balanced by the heat produced
by combustion. The characteristic flame structure that is observed at an edge of the
stoichiometric surface bordering the extinction zone can be modelled locally by a triple
flame [3].

Thus, triple flames are physically embodied in real combustors, and it is important
to avoid undesirable combustion conditions there such as flame flashback or blow-off.
Therefore, it is desirable to understand the propagation characteristics of these flames and
how to stabilise them. Furthermore, the speed of propagation of the triple flame determines
such important properties as the flame surface increase rate in non-premixed combustion
and the lift-off distance in lifted flames at burners [3].

The goal of the present numerical study is to analyse triple flames with a simplified
model that describes qualitatively how the premixed branches can be split into two sections,
which display the pentasectional character of the triple flame (see Figure 1). This discussion
will focus on multidimensional, steady flames where all five sections appear simultaneously.
Only monotonic variation of concentration in space will be considered. The modelling
performed in the present work also addresses issues such as flame stabilisation, flammability
limits, temperature and shape. The background for this study will be explained in the
following literature review section.
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Figure 1. Pentasectional triple flame sketch and problem domain.

2. Literature review

Triple flames have been investigated experimentally, analytically and numerically. They
were first observed in a buoyant methane layer experiment [4]. Other experimental studies
in which triple flames appeared include [5–12]. These studies helped to understand triple
flame properties such as propagation, stabilisation, liftoff and blowout behaviour, and
concentration and dilution effects. Collectively, they cover several flow configurations,
including non-premixed jets, laminar mixing layers, two-dimensional and axisymmetric
counterflows, and liquid-film fuel combustors.

To the best knowledge of the authors, triple flames were first analysed for an unsteady
premixed flame moving through a stratified combustible mixture forming a diffusion flame
as the premixed flame passed from a fuel-rich zone to a fuel-lean zone [13]. Triple flames
were also identified as transient laminar flamelets in the combustion of turbulent diffusion
flames [14,15]. The analytical formulation was developed accounting for approximations
such as small upstream concentration gradients (also called slowly-varying triple flames)
[1,2], or parabolic flame paths [3]. These studies helped gain insight to Lewis number
effects on flame structure and propagation speed decrements resulting from increments in
the upstream mixture ratio. They also revealed that the adiabatic planar flame speed is an
upper boundary for the propagation speed of triple flames for the constant-density case.
Another simple analytical method was used to study buoyancy effects on triple flames [16].

The articles that used numerical approaches to triple flames may be classified depending
on three important aspects: the use of constant or variable density, prescribed unity or non-
unity Lewis number for the species, and one-step versus detailed chemical kinetics. Table 1
shows a chronologically ordered list of articles that presented numerical results on triple
flames.

In solving problems that involve reacting flows, the choice of the model for the chemi-
cal kinetics is significant. In 1981, Westbrook and Dryer [27] examined simplified reaction
mechanisms for the oxidation of hydrocarbon fuels using a numerical laminar flame model
entailing one and two global reaction steps and quasi-global mechanisms. The reaction-rate
parameters were changed for different combinations of hydrocarbon fuels and air, and such
parameters were adjusted to provide the best agreement between computed and experi-
mentally observed planar flame speeds. The theoretical models that use 1-step chemical
reaction mechanisms entailing parameters obtained from experimental analysis have been
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Table 1. Chronological classification of numerical studies.

Reference no. Density Lewis no. Chemical kinetics Laminar/Turbulent

[1] Constant Unity 1-step, unmatched parameters Laminar
[17] Constant Unity 1-step, unmatched parameters Laminar
[6] Constant Unity 1-step, unmatched parameters Laminar
[18] Variable Non-unity 1-step, unmatched parameters Laminar
[19] Variable Unity 1-step, unmatched parameters DNS
[20] Constant Unity 1-step, unmatched parameters Laminar
[21] Constant Variable 1-step, unmatched parameters Laminar
[9] Variable Non-unity 10-step, detailed kinetics Laminar
[22] Variable Non-unity C1, detailed kinetics DNS
[23] Variable Non-unity 38-step, detailed kinetics DNS
[16] Variable Unity 1-step, unmatched parameters Laminar
[24] Variable Non-unity 38-step, detailed kinetics DNS
[25] Variable Non-unity 1-step, matched parameters Laminar
[26] Variable Unity 1-step, matched parameters DNS

identified in Table 1 as ‘matched’. Chemical kinetics models that are arbitrary in that sense
have been labelled ‘unmatched’.

Note that all the numerical studies listed in Table 1 that use one-step reaction mecha-
nisms assume chemical kinetics with unity reaction order and identical molecular weights
for each reactant except [25], in which the activation energy was artificially adapted as a
function of fuel-to-oxygen equivalence ratio to match real kinetic rates. A study of triple
flames entailing a one-step reaction mechanism equipped with the experimentally obtained
parameters from [27] is missing. Thus, this paper will address that need. We will assume
simplifications such as constant density and unit Lewis number, but the chemical reaction
term in the equations will be equipped with the kinetics parameters provided by [27] and
the reactants will be balanced in proper mass proportions. We will no longer maintain the
artificial symmetry of many previous research works with regard to the concentration and
molecular weight of each reactant.

Although the constant-density assumption is often designated as low heat release, it
does not mean, for example, that the amount of heat produced by the combustion process
is low compared with the enthalpy of the unburned gas. The commonly used description
‘low heat release’ is poor because the energy per unit mass of the combustible mixture is
actually not reduced. Rather, the resulting gas expansion is ignored; so, ‘constant density’
is a superior description. As opposed to the low-heat release cases in which the triple flame
propagation velocity is bounded above by the planar premixed flame speed, heat release
causes gas expansion and redirection of the flow that produces triple flame propagation
velocities greater than the planar flame velocity. These effects depend also on the mixture
ratio gradient at the inlet. The heat release causes an expansion in the gas field which
results in the slowing of the incoming unburned gases as they approach the flame front
[18]. Consequently, the free stream velocity exceeds the local flame velocity. Aside from the
effects that heat release has on flame propagation, using unity reaction orders and unmatched
chemistry parameters results in flame front shape profiles that show symmetric properties
with respect to the stoichiometric line. Symmetry will be prevented by the kinetics that we
will use in the present study.

A review of edge-flames described tribrachial flames as ignition fronts with positive
speeds characterised by a trailing diffusion flame [28]. The solutions showed structures
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which, after initial transients, propagated at well defined speeds and had unchanging shape.
Under the mentioned assumptions, the present work reports results that are in agreement
with these features. However, some new features related to the pentasectional character will
be identified and discussed. The new model, numerical details and results are presented in
the following sections.

3. Model and analysis

3.1. Formulation of differential equations

The two-dimensional transient model presented is subject to the following assumptions:
fluid consisting of a mixture of fuel and oxidiser (i.e. propane and air); laminar flow;
uniform velocity field with x-velocity component only (U); unit Lewis number (Le = 1);
constant thermal conductivity and specific heat; neglected radiative transfer; and constant
density. The thermal conductivity and the specific heat will be evaluated for the calculation
of thermal diffusivity at a mean flame temperature while the density will be assessed at the
upstream conditions. The value of the heat of combustion Q is taken from the literature [29].
The lower heating value is assumed throughout this study, which implies that none of the
water in the products condenses. The upstream velocity U will be adjusted conveniently in
order to stabilise the flame. Changes in U imply a change in the pressure gradient. However,
the pressure time derivative term is approximated to be zero in the energy equation because
the time change in pressure due to these small velocity adjustments will be very small
compared to the changes in temperature through the domain. Furthermore, we are interested
in the steady-state solution reached asymptotically in time, and temporal changes during
the transient part of the simulation are less interesting.

We define the following two Shvab-Zel’dovich variables, as well as the differential
operator L:

β1 = YF − νYO, β2 = h + νYOQ = cpT + νYOQ (1)

L (u) = ∂u

∂t
+ U

∂u

∂x
− D∇2u. (2)

Under the proposed hypothesis, selected combinations of the equations of energy, fuel
and oxygen species yield

L (β1) = 0, L (β2) = 0, L (YF) = − ω̇

ρ
(β1, β2, YF) . (3)

We will consider the flame to be propagating in the negative x-direction in the laboratory
through a quiescent combustible mixture. We seek the final steady velocity of propagation
Uo > 0. If the reference frame moves with the flame, we have a steady free stream at
velocity Uo flowing in the positive x-direction. Then, U = Uo and the time derivative in
operator L becomes zero. However, we do not know Uo a priori, which is an eigenvalue of
the problem.

In general, we must solve the system of equations (3). However, if we restrict the fuel
and oxidiser mass fractions at the inlet to be linear functions of y, we can show that then
only a single equation has to be solved.



Combustion Theory and Modelling 459

3.2. Initial and boundary conditions

Instead of setting initial conditions for β1 and β2, it is more intuitive to set them for the fuel
and oxygen mass fractions and for the temperature. Hyperbolic tangent functions of x are
used to represent the decreases in fuel and oxygen mass fractions or temperature rise across
the flame. The initial conditions for β1 and β2 are obtained using the three previous initial
conditions in Equations (1). The initial velocity value is taken from experimental data for
premixed stoichiometric planar flames.

The boundary conditions are imposed on the distributions of fuel, oxygen and tem-
perature, and they prescribe the following boundary conditions for the functions β1 and
β2.

At x = L:

∂YF

∂x
= 0,

∂YO

∂x
= 0,

∂T

∂x
= 0. (4)

At y = ±W/2:

∂2YF

∂y2
= 0,

∂2YO

∂y2
= 0,

∂2T

∂y2
= 0. (5)

For x = 0 (inlet), the mixture ratio is a prescribed function of y and its gradient is varied
and used as a parameter of the problem. In these conditions, one side of the domain becomes
fuel-rich whereas the other side becomes fuel-lean. Four types of transverse variations for
upstream flow are considered: linear variation of mass fraction; hyperbolic tangent variation
of mass fraction; linear variation of equivalence ratio; and hyperbolic tangent variation of
equivalence ratio.

The linear variation of mass fraction allows an analytical simplification. The hyperbolic
tangent variation of mass fraction presents a flow similar to a mixing layer. The hyperbolic
tangent variation of equivalence ratio resembles profiles used previously [18]. The linear
variation of equivalence ratio provides an interesting comparison. The use of equivalence
ratio is especially useful in studying flammability limits.

3.2.1. Linear mass-fraction profile

Let us now consider the particular case in which the mass fractions are linear in y far
upstream (x → −∞). We also prescribe the temperature (or enthalpy) at the inlet.

YF−∞ = YFo
+ k1y, YO−∞ = YOo

+ k2y, h−∞ = ho, T−∞ = To. (6)

YFo
and YOo

are in stoichiometric proportions. A fuel-rich mixture exists for y < 0 and a
fuel-lean mixture occurs for y > 0. Then, k1 < 0 < k2.

Let us define

a = νk2 − k1 > 0, H = ho + νYOo
Q, b = νk2Q > 0. (7)

Then

β1−∞ = −ay, β2−∞ = ho + νYOo
Q + νk2Qy = H + by. (8)
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Note that β1 = −ay and β2 = H + by become zero when differentiated once by t or x or
twice by y. Therefore, they satisfy L(β) = 0 as well as satisfying the upstream and side
boundary conditions. We have solutions to the first two equations in (3), which may be
substituted into the third one so that

L (YF) = − ω̇

ρ
(−ay,H + by, YF) . (9)

Thus, we have shown that when the mass fractions of the reactants at the inlet are linear
functions, only Equation (9) must be solved for YF. Since β1 and β2 are known, back
substitution into Equations (1) will provide YO and T (which is related to the enthalpy). The
linear profiles upstream of the flame front imply that diffusion in the y-direction is uniform
and the composition will not vary along any streamline before it reaches the flame.

3.2.2. Hyperbolic tangent mass-fraction profile

In reality, it would be difficult to find purely linear functions of y at the inlet of a combustor. In
the modelling of mixing layers, hyperbolic tangent functions are usually used to represent
the velocity profile across the layer (see for example [30,31]). The hyperbolic tangent
functions for the reactants mass fractions at the inlet are given by Equations (10):

YF−∞ = YFo
[1 + tanh (k3y)] , YO−∞ = YOo

[1 + tanh (k4y)] . (10)

To be consistent with the criteria used before, we choose to have a fuel-lean mixture
for y > 0 and a fuel-rich mixture for y < 0. Then k3 < 0 and k4 > 0. In order to make this
hyperbolic case comparable to the linear case, the parameters k3 and k4 are related to the
linear slopes k1 and k2 so that the maximum gradients of the hyperbolic tangent profiles
match the slopes of the linear profiles. For any case entailing nonlinear functions at the
inlet, the problem cannot be reduced to solving a single equation. Instead, the system of
equations (3) has to be solved. With this profile, diffusion fluxes in the y-direction upstream
of the flame are not uniform with y. Accordingly, some change of composition for a given
streamline will occur upstream of the flame.

3.2.3. Linear equivalence ratio profile

For the cases in which the inflowing equivalence ratio is prescribed as a linear function we
use

�−∞ = k5y + k6. (11)

3.2.4. Hyperbolic tangent equivalence ratio profile

For the cases in which the inflowing equivalence ratio is prescribed as a hyperbolic tangent
function we use

�−∞ = 0.5[1 + tanh(k7y)]. (12)
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3.3. Chemical kinetics

Let us consider the Arrhenius one-step form for the reaction rate, where [F] and [O] are the
molar density for fuel and oxygen species, respectively, and T − To is used to confront the
‘cold-boundary difficulty’ [32]:

d[F]

dt
= [F]m[O]nA exp

{
− Ea

Ru (T − To)

}
, ω̇ = ρ

dYF

dt
. (13)

For comparison purposes, two different sets of the kinetics parameters will be used:

• matched kinetics with constants from [27] (propane and air): m = 0.1, n = 1.65,
Ea/Ru = 15,098 K, A = 4.84 × 109 (kmol m−3)−0.75 s−1, T0 = 300 K;

• unmatched kinetics: m = 1, n = 1.

Previous studies that used unmatched kinetics tended to provide qualitative explanations
of the flame shape and propagation rather than quantitative descriptions. Our goal here is
to compare the qualitative differences between the use of matched and unmatched kinetics.
To achieve this, the reaction orders are switched to unity. The original values of the oxygen
molecular weight, activation energy Ea and pre-exponential factor A are kept the same.
However, the heat of combustion Q is reduced (by a factor of six) so that the propagation
velocity for stoichiometric conditions in the unmatched kinetics case equals the velocity
calculated later with the original kinetics for propane and air (0.37 m s−1). The numerical
scheme specifications will be presented in the following section.

3.4. Numerical method and convergence

The domain is discretised using a Cartesian uniformly spaced two-dimensional mesh. An
explicit forward difference is used for the transient terms, in which �t represents the step
in time, and a central difference is used for the diffusion terms. The time step is chosen so
that it satisfies the numerical stability requirements; we also use an upwind scheme for the
advection term.

After starting the code, the shape of the fuel mass fraction profile changes every step in
time, from its initial profile towards a steady shape governed by Equation (3). Taking this
into account, the upstream velocity is not changed during this initial period of simulation.
Afterwards, the ‘cliff ’ of the fuel mass fraction moves forward or backward depending on
how different the upstream velocity U is compared to Uo. We adjust this velocity until the
‘cliff ’ does not move. To achieve this goal, we focus on the peak value of the reaction rate
and observe its change in position over time xmax (t), as shown in Figure 2. In the general
case, the reaction rate will be a function of x and y. We will focus on the y-coordinate in
which the peak of the reaction rate is found.

The upstream velocity is adjusted according to the following increment:

�U = xmax(t + �t) − xmax(t)

�t
. (14)

Note that �U is positive when the flame moves forward. Therefore, the adjusted up-
stream velocity is given by

U new = U old − �U. (15)
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Figure 2. Position change of the reaction-rate peak.

After some time of repeating this iterative process during the simulation, the upstream
velocity increment goes to 0 (�U → 0) and the upstream velocity becomes Uo. The criterion
to end the simulation is the condition that �U is zero for a sufficiently long period of time
(i.e. 103 × �t).

The mesh has been refined until the results have become mesh-independent, resulting
in 500 nodes in each direction for a domain that is 5 mm long and 5 mm wide. When
considering the minimum number of nodes to be used, we must also bear in mind that the
most drastic gradients in the physical variables occur within the reaction zone. To capture
these gradients successfully with the reaction zone thickness about one-half of a millimeter,
500 nodes are used in the x-direction, yielding about 50 nodes in the reaction zone. Farther
downstream, there are about 25 nodes across the diffusion flame in the y-direction. These
quantities are deemed to be sufficient.

In order to show that the results are independent of the size of the domain, calculations
have been performed for different domain sizes while keeping the same �x and �y as for
the 5 mm case. The results show their independence of the domain size.

4. Results and discussion

4.1. Flammability limits: Pentasectional character

One of the goals of this section is to compare the differences in flammability limits be-
tween our model and the one used by Westbrook and Dryer [27] for planar flames. They
reported equivalence ratio values for the fuel-lean and fuel-rich flammability limits of a
one-dimensional planar flame of 0.5 and 3.2, respectively (for propane and air). Reduc-
tion of our model to the one-dimensional case yields 0.5 and 2.8 for these two limits. So,
good agreement is found for the planar case which corresponds to the experimental values.
However, the theory now predicts different values for the two-dimensional case, a finding
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Figure 3. Scalar variables – linear equivalence ratio at the inlet (maximum equivalence ratio = 5.5).

that has not previously been reported. Results for the two-dimensional problem are shown
in Figures 3, 4 and 5. The plots portray the reaction rate as well as the scalar quantities
(reactants mass fractions, reaction rate and temperature) at several x-stations when the
equivalence ratio at the inlet varies linearly from 0 at the fuel-lean side to different finite
values at the fuel-rich side.

The fuel-lean equivalence ratio limits for these three cases are very close to the value
reported [27]. According to the 3.2 fuel-rich limit for a planar flame, which slightly exceeds
the experimental value, we might expect to see the fuel-rich premixed flame disappearing
in Figures 3–5, but instead it extends beyond the boundary of the computational domain.
To address this issue, we analyse two more cases with hyperbolic tangent functions for the
equivalence ratio at the inlet: one varying from 0 to 10 and the other one varying from pure
fuel to pure air. See Figures 6 and 7, respectively.

As seen in Figure 6, the fuel-lean flammability limit has been extended with respect
to the 0.5 encountered in the previous cases. The fuel-rich flame is still extending beyond
the computational boundary. In Figure 7, we see a fuel-lean limit which is even leaner
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Figure 4. Scalar variables – linear equivalence ratio at the inlet (maximum equivalence ratio = 6.3).

than in the previous figures and the planar flame. As greater gradients are imposed, greater
temperature and mass fraction gradients in the y-direction appear with greater heat and
mass transfer in the y-direction, which aids the extension of the fuel-lean flammability
limit. On the other hand, the fuel-rich flame comes to an end at an equivalence ratio of 6.53.
The reason for this differences in the fuel-rich flammability limit is the presence of oxygen.
The last case goes to pure fuel at the computational boundary, meaning that the amount of
oxygen is almost zero for a substantial distance from the negative y boundary. Still, in these
cases, the amount of oxygen present on the fuel-rich side is still large enough to support
the combustion.

These results suggest a study of the transverse heat and mass transfer, especially near
the flammability limits. For the fuel-lean flame in Figures 3–7, fuel and oxygen are diffused
towards the lean flame in the negative y-direction from outside the flame region. Heat is
diffused in the positive y-direction towards the lean flame from inside the flame region. For
the fuel-rich flame in Figures 6 and 7, fuel and oxygen are diffused towards the rich flame
in the positive y-direction from outside the flame region. Heat is diffused in the negative
y-direction towards the rich flame from inside the flame region. The fluxes of fuel mass
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Figure 5. Scalar variables – linear equivalence ratio at the inlet (maximum equivalence ratio =
8.75).

fraction in the x- and y-directions, Fx and Fy respectively, are defined in Equations (16):

Fx =
∣∣∣∣UYF − D

∂YF

∂x

∣∣∣∣ , Fy =
∣∣∣∣D∂YF

∂y

∣∣∣∣ . (16)

The fluxes of the oxygen mass fraction are calculated in the same fashion by replacing by
oxygen in Equations (16). Table 2 shows computations of such fluxes for Figures 6 and 7 at
several x-positions. Calculations are made at the flame front. The evolution in x of the ratio
between the fluxes in the x-direction to the y-direction shows that the premixed branches
tend to develop some diffusion character with increasing downstream distance. Although
the hyperbolic tangent profile has Fy decreasing with increasing y magnitude, the ratio
Fx/Fy at the flame front is generally decreasing which implies an increasing dependence
on transverse diffusion as the flammability limits are approached. This diffusion allows
extension of the limits. This character is identified here as the pentasectional character of
the triple flame. Essentially, each ‘premixed’ branch of the flame can be divided into two
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Figure 6. Scalar variables – hyperbolic tangent mass fractions at the inlet (maximum equivalence
ratio = 10).

sections: one section near stoichiometric conditions which is predominantly premixed and
a section near the flammability limits where a combined diffusion and premixed character
exists. Computations of the same fluxes at the trailing diffusion flame show clear dominance
of diffusion transport in the y-direction, as expected because it is a pure diffusion flame.

4.2. Flame structure and propagation

A qualitative analysis of the flame propagation features and shape is presented in this
section.

Figure 8 shows the flame propagation velocity versus upstream mixture gradient for
both the linear and hyperbolic tangent functions for the reactant mass fractions at the
inlet. The slope percentage shown in the abscissa axis is based on the maximum linear
slope of the upstream fuel mass fraction. The dashed lines are least square fits to the
numerical data. It can be seen how the triple-flame propagation velocity decreases as the
mixture gradient is increased. The flame with hyperbolic functions at the inlet is found to
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Figure 7. Scalar variables – hyperbolic tangent mass fractions at the inlet (pure fuel and pure air at
the boundaries).

propagate slightly more slowly than for the linear case. The solid line corresponds to the
stoichiometric planar flame propagation velocity and it is an upper limit of the triple flame
propagation velocity. As expected, this result is in qualitative agreement with [1] which
neglected density variation, an assumption that is also made in this study. The analysis with
linear mass fraction variations at the inlet is repeated with the use of unmatched kinetics

Table 2. Oxygen mass fraction fluxes towards the fuel-rich flame branch and fuel mass fraction
fluxes towards the fuel-lean flame branch.

x = 2 mm x = 4 mm x = 8 mm

Fx Fy Fx/Fy Fx Fy Fx/Fy Fx Fy Fx/Fy

Oxygen Figure 6 0.04 0.014 2.86 0.025 0.011 2.27 0.02 0.0091 2.20
Figure 7 0.033 0.013 2.54 0.0121 0.006 2.02 0.0093 0.0031 3.00

Fuel Figure 6 0.0027 0.002 1.35 3.65e−4 5.3e−4 0.69 1e−4 2e−4 0.50
Figure 7 0.0024 0.0018 1.33 3.5e−4 4.5e−4 0.78 1.2e−4 1.6e−4 0.75
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Figure 8. Triple flame propagation velocity versus mass fraction slope at the inlet.

to assess the qualitative effects on the flame features. The propagation velocity for the
unmatched kinetics is lower than for the original kinetics and is also bounded above by the
planar flame velocity.

The upstream mixture ratio gradient variations also affect the flame structure. As
the gradient is increased from Figure 3 to Figure 7, the flame curvature becomes more
pronounced, especially on the fuel-lean side, and a greater amount of reactants is left
unburned behind the flame. The diffusion transport in the transverse flow direction brings
these species to the stoichiometric line in which the diffusion flame burns them. With
increasing inlet gradient, this transport of species is greater too, which in turn makes the
diffusion flame stronger. The temperature profile behind the flame is a maximum around
the stoichiometric line (y = 0) and then it decreases to the sides. This decrement is more
substantial on the fuel-lean side, which has a more curved flame front. So, the temperature
on the fuel-lean side is not as high as on the fuel-rich side. Thus, an asymmetric behaviour
of the physical properties can be noticed, even for small gradients. This is in contrast
to the results provided by other studies (see Section 2), which use unmatched chemical
kinetics and obtain symmetric results. Figures 9 and 10 show the reaction-rate profiles

Figure 9. Reaction rates (unmatched kinetics, upstream linear mass fractions). (a) Slope at the inlet =
40%; (b) slope at the inlet = 60%.



Combustion Theory and Modelling 469

Figure 10. Reaction rates (unmatched kinetics, upstream linear mass fractions). (a) Slope at the
inlet = 80%; (b) slope at the inlet = 100%.

using our model with unmatched kinetics. Indeed, symmetric distributions with respect to
the stoichiometric line are obtained for all the physical quantities. For this case, increasing
the inlet gradient also makes the diffusion flame stronger, and the flame curvature becomes
more pronounced. The effect on the flammability limit extension as the inlet gradient is
increased is maintained with the unmatched kinetics. Table 3 shows the fluxes Fx and Fy for
Figures 9(b) and 10. As for the matched kinetics case, now the ratio Fx/Fy also decreases
at the flame front with increasing y. Hence, the triple flame also develops a pentasectional
character, which is emphasised for greater gradients at the inlet.

To gain more insight on the flame shape, we analyse two characteristic zones of the
triple flame, which are the most forward point and the maximum reaction-rate point.
Figure 11 shows a three-dimensional plot of the reaction rate. The diffusion flame can
be seen at y = 0, and the curved flame front has the maximum reaction rate near the
stoichiometric line. In Figure 11, the most forward point corresponds to the minimum
x-location at which the reaction rate is different from zero. This is the leading point of the
triple flame. The maximum reaction-rate point has an associated upstream mixture ratio
that should correspond to the mixture ratio that yields the maximum reaction rate for the

Table 3. Unmatched kinetics: oxygen mass fraction fluxes towards the fuel-rich flame branch and
fuel mass fraction fluxes towards the fuel-lean flame branch.

Distance from the flame leading edge

0.5 mm 1.5 mm 2.5 mm

Fx Fy Fx/Fy Fx Fy Fx/Fy Fx Fy Fx/Fy

Oxygen 60% 0.0907 0.0289 3.1391 0.0469 0.0195 2.3852 0.0210 0.0141 1.4927
80% 0.0776 0.0219 3.5425 0.0331 0.0147 2.2486 0.0144 0.0086 1.6642

100% 0.0648 0.0185 3.5029 0.0203 0.0109 1.8709 0.004 0.0037 1.0808
Fuel 60% 0.0913 0.0316 2.8933 0.0486 0.0210 2.3126 0.0238 0.0170 1.4002

80% 0.0696 0.0344 2.0241 0.0329 0.0159 2.0686 0.0140 0.0094 1.4873
100% 0.0601 0.0282 2.1275 0.0174 0.0118 1.47 0.0041 0.0038 1.077
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Figure 11. Reaction rate 3D plot (corresponds to Figure 6).

one-dimensional case. Reduction of our model to this case shows that the flame propagation
velocity and maximum reaction rate peak slightly off stoichiometric conditions, to the fuel-
lean side, while the temperature peaks at stoichiometric conditions. A comparison is made
with the information found for the one-dimensional analysis. The location of the most
forward point is also compared with the location of the maximum reaction-rate point.

As shown in Figure 12(a), for the case with linear mass fractions at the inlet and matched
kinetics, the peak of the reaction rate is located at the fuel-lean side, and it moves towards
the stoichiometric line as we increase the slope. This agrees with the one-dimensional
result. The most forward point on the flame front is located on the fuel-rich side and it also
moves towards the stoichiometric line as we increase the slope. Using unmatched kinetics,
both points appear on the stoichiometric line regardless of the upstream mixture gradient.

For the case with hyperbolic tangent mass fractions at the inlet (Figure 12(b)), the
peak of the reaction rate is located at the fuel-lean side (y > 0), and it moves towards
the stoichiometric line as we increase the mixture gradient. This result is in agreement
with the one-dimensional result and the two-dimensional linear case. The most forward
point is located on the fuel-rich side and it also moves towards the stoichiometric line
as the upstream mixture gradient is increased. This behaviour is in agreement with the
two-dimensional linear case.

Figure 12. Location of the maximum reaction rate and most forward points. (a) Linear mass fractions
at the inlet; (b) hyperbolic tangent mass fractions at the inlet.
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5. Conclusions

A numerical two-dimensional analysis has been presented to model triple flames. The
results reflect that imposition of greater transverse mixture ratios extend the flammability
limits beyond those corresponding to a planar flame. This result is due to an increased
transport of heat and mass in the transverse direction of the flow. Studying the mass fluxes
of the reactants towards the lateral ‘premixed’ flame branches shows that they evolve
from premixed flames at near stoichiometric conditions to a combination of premixed
and diffusion flames near the flammability limits. So, each ‘premixed’ branch can be
separated into two sections, which is identified as the pentasectional character of the
triple flame.

Linear and hyperbolic tangent functions of the transverse coordinate have been used
to prescribe the equivalence ratio or the reactants mass fractions at the inlet. Linear and
hyperbolic tangent variations of inflowing mass fractions produce qualitatively similar
results. The flame propagation speed has a limiting value, which corresponds to the planar
premixed flame speed; the propagation velocity is slightly higher for the linear case than for
the hyperbolic case; increasing the upstream transverse mixture gradient causes a reduction
of the triple-flame propagation velocity and an increase of the flame front curvature; the
flame front shape is highly asymmetric with respect to the stoichiometric line; the maximum
reaction-rate point is located at the fuel-lean side, while the triple flame leading point is
located at the fuel-rich side. Both points get closer to the stoichiometric line as the upstream
mixture gradient is increased. Using unmatched chemical kinetics with unitary mass fraction
exponents results in symmetric flame structures with respect to the stoichiometric line, and
maximum reaction rate and most forward points located at the stoichiometric line. Thus,
the use of unmatched kinetics leads to solutions that do not represent qualitatively real triple
flame structure. However, flammability limit extension and pentasectional character of the
triple flame still appear.

Even though the heat release effects have been relaxed, the work presented in this paper
shows the importance of using experimental chemical kinetics data. Heat release causes
the streamlines ahead of the flame to diverge due to gas expansion, which at the same time
causes the mixture gradient to decrease, especially around the stoichiometric line where
heat release effects are more pronounced. The mixture gradient strength increases again
farther away from the stoichiometric line, where the streamlines become more parallel.
These consequences on the mixture gradient along the flame front would cause changes in
the solutions for the flame structure if gas expansion due to heat release were considered.
However, asymmetries of the flame front associated with the use of experimental kinetics
would still be expected.

A suggested further refinement of the present modelling would be to take density
variation into consideration together with the use of experimental chemical kinetics data.
More accurate chemical kinetics mechanisms (i.e. multiple-step) would also be desir-
able, as well as considering suitable non-unity Lewis numbers. A study accounting for
these new assumptions together with the imposition of a velocity gradient at the in-
let would be expected to affect the x-coordinate at which the flame may be stabilised.
Simulations performed in such a study would be helpful for the design of combustion
chambers.
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