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Nonlinear, transverse-mode, liquid-propellant-rocket-motor combustion instability is examined for the first time

via a two-time-variable perturbation expansion in an amplitude parameter. Both triggered and spontaneous

instability domains are studied. A specific coaxialmulti-injector example demonstrates thematching process between

wave dynamics and injection/combustion mechanisms. The combustion has a characteristic time for mixing,

producing a time lag in the energy release rate relative to pressure. The coupled combustion process and wave

dynamics are calculated for the first tangential mode. Two first-order ordinary differential equations are developed

and solved for the amplitude and phase angle in the slow time. Limit cycles and transient behaviors are resolved.

Nonlinear triggering is predicted in certain operational domains; above a critical initial amplitude, the amplitude

grows; otherwise, it decays with time. A linear representation of the combustion process suffices to balance nonlinear

nozzle damping. This perturbation approach provides better physical understanding than a computational fluid

dynamics approach and allows lower-cost computation to determine trends over the key parameter domains.Moving

a higher fraction of the propellant flow away from the chamber center has a destabilizing effect on the tangential

mode. Amost stableMach-number value is deduced. The reduction to two governing ordinary differential equations

benefits future optimization and control analyses.

Nomenclature

A = pressure oscillation amplitude
Ae = cross-sectional area of nozzle entrance, m2

At = cross-sectional area of nozzle throat, m2

A� = pressure oscillation limit cycle amplitude
a = speed of sound, m∕s
B = nondimensional parameter defined in Eq. (10)
cp = specific heat at constant pressure, J∕�kg · K�
cv = specific heat at constant volume, J∕�kg · K�
D = mass diffusivity, m2∕s
E = energy release rate per unit volume, J∕�m3 · s�
E1 = complex coefficient for energy release rate used in

Eq. (75)
Ec;1 = energy-release-rate coefficient defined in Eq. (22),

J∕�m3 · s�
Es;1 = energy-release-rate coefficient defined in Eq. (24),

J∕�m3 · s�
f = frequency, s−1

G = Green’s function
h = specific enthalpy, J∕kg
k1-k4 = perturbation parameters defined in Eq. (59)
Jn = Bessel function of first kind and nth order
L = chamber length, m
Lf = flame length, m
M = Mach number
_M = steady-state injector mass flow rate
_m = mass flow rate, kg∕s
N = number of injectors
P = complex coefficient for pressure used in Eq. (75)
p = pressure, Nm−2

Q = energy value per mass of fuel, J∕kg

Qn�r� = functions defined in Appendix A
qn�r� = functions defined in Appendix A
R = chamber radius, m
Rs = mixture specific gas constant, J∕�kg · K�
Rf = flame radius, m
Ri = inner radius of coaxial jet, m
Ro = outer radius of coaxial jet, m
r = radial position, m
snh = hth root for zero slope of Bessel function of first kind

and order n
T = temperature, K
t = time, s
U = coaxial jet velocity, m∕s
u = vector velocity, m∕s
uj = Cartesian velocity component, m∕s
ur = radial velocity component, m∕s
uθ = tangential velocity component, m∕s
V1�x� = burning rate parameter defined by Sirignano and

Krieg [27], m−1

V2�x� = integral quantity defined by Sirignano and Krieg [27]
V3�x� = in-phase component of combustion response factor

defined in Eq. (74)
V4�x� = out-of-phase component of combustion response

factor defined in Eq. (74)
W = Wronskian
xj = Cartesian coordinate, m
Yn = Bessel function of second kind and nth order
z = nondimensional fast time
Γ�γ� = function of gamma expanded in Eq. (15)
γ = ratio of specific heats
ε = nondimensional amplitude perturbation parameter
θ = azimuthal position
ν = fuel-to-oxygen mass stoichiometric ratio
ρ = density, kg · m−3

σ = small positive parameter characterizing slow time scale
τ = slow nondimensional time
τM = characteristic mixing time, s
ψ = phase angle
ω = angular frequency, rad∕s
ω2 = limit cycle angular frequency perturbation, rad∕s

Subscripts

F = fuel
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i = inflow condition
j = index for Cartesian coordinates
O = oxidizer
ss = steady state

I. Introduction

L IQUID-PROPELLANT-ROCKET-ENGINE (LPRE) combus-
tion instability has been a longstanding natural phenomenon,

which causes problems and creates the need for control. In a LPRE,
the combustion process produces a very high-energy release rate per
unit volume that, inmany circumstances, has characteristic times that
result in reinforcement of the acoustical oscillations and produces
very high-pressure and -velocity amplitudes. These oscillations can
cause undesirable oscillations in thrust, vibrations that result in prob-
lems for people or equipment on the spacecraft, and increased heat
transfer in already critical regions, e.g., the nozzle throat. Transverse
spinning waves can have substantially larger amplitudes than longi-
tudinal waves because no shock waves form and thereby dissipation is
reduced [1,2]. The combustion concentrates near the injector end,
resulting in very high heat transfer rates to the injector. The increased
heat transfer at the injector and/or nozzle throat often leads to the
destruction of those walls and disaster for the flight mission.
Theoretical, computational, and experimental research has been

underway at varying levels of intensity for more than a half century.
Most of the physics of the nonlinear acoustic oscillations were
identified in the 1950s and 1960s, but the knowledge of the details of
coupling with the combustion processes has trailed. An excellent
compilation of major research during that early period is provided by
Harrje and Reardon [1]. Also, an interesting discussion of the famous
F-1 RocketMotor instability problems is given byOefelein andYang
[3]. Two types of instability occur: linear (i.e., spontaneous)
instability and nonlinear (i.e., triggered) instability. The describing
terms pertain to initiation only; all instabilities of concern have
nonlinear behavior once established. Linear instabilities grow in
amplitude from the normal noise associated with the high-mass flow,
multi-injector rocket chamber environment; theoretically, they grow
from infinitesimal disturbances. Nonlinear instabilities require an
initiating disturbance of magnitude greater than a required threshold
before becoming unstable. With a disturbance below the threshold
value, stability is exhibited. A disruption in propellant mass flow or a
very large fluctuation caused by transient operation can provide the
necessary trigger for nonlinear growth. In experiments, small
explosives have triggered nonlinear instabilities.
Each resonant mode oscillation is a characteristic of the particular

combustion chamber and convergent portion of the nozzle. These
resonant mode oscillations and their well-approximated frequencies
are predictable by linear theory [1,4–6]. The lowest frequency mode
is identified as the fundamental mode, while the other modes are
overtones. Only in special situations are the overtones also harmonics
of the fundamental mode; that is, their frequencies are integer
multiples of the fundamental frequency. For transverse modes, the
harmonics are not predicted by linear theory. It is well known from
the theory of nonlinear oscillations [7] that, for many mechanical
systems, nonlinear resonance can involve any of several develop-
ments: the generation of harmonics superimposed on the basic
resonant mode, the simultaneous excitement of other resonant modes
by the transfer of energy amongmodes, and the transfer of energy to a
subharmonic mode of which the frequency is lower than the basic
mode and related arithmetically to two or more resonant modes (e.g.,
the difference between two resonant frequencies).
There are two general types of acoustical combustion instability:

driven instability and self-excited instability, as noted by Culick [6].
He describes evidence in some solid-propellant rockets of the former
(driven) type in which vortex shedding (a more organized noise)
causes kinematic waves (i.e., waves carried with the moving gas) of
vorticity or entropy to travel to some point where an acoustical
reflection occurs. The reflected wave causes more vortex shedding
after travelling back, and a cyclic character results. These driven
instabilities do not rely on acoustical chamber resonance, and
acoustical waves travelling one way (upstream) are the only type of

consequence with kinematic waves only travelling downstream by
the kinematic definition. These driven-instability amplitudes are
much smaller in amplitude since the energy level is limited by the
initiating energy that causes the upstream-travelling acoustic wave;
essentially, the upstream acoustic wave is repeatedly (i.e., period-
ically) initiated. (On the contrary, resonant self-excited oscillations
need only one initiation and then receive energy additions in a
periodic fashion from the combustion process building up its
amplitude.) These driven instabilities have also been observed in
ramjet combustors but never in liquid rockets and will not be
addressed here. Self-excited instabilities are the primary type relevant
to liquid-propellant rockets, although they also appear elsewhere.
Based on experiment and development-test experience [1], three

stability domains can exist: unconditionally stable operation inwhich
the amplitude of any disturbance (large or small) decays in time to the
steady-state operation; unconditionally unstable operation in which
the amplitude of any disturbance (large or small) grows in time to a
limit-cycle oscillation; and bistable operation in which the amplitude
of any disturbance grows to a limit-cycle above a specific threshold
but decays to the steady-state results for disturbances of a magnitude
below the threshold. These self-excited instabilities are not limited in
amplitude by the energy of the initiation action; they find the energy
within their own “macro” (i.e., chamber or acoustic wavelength
scale) behavior as the oscillations grows and develops. So, the
instability becomes macrolevel although the initiation can be
microlevel (at least one order of magnitude smaller than the chamber
scale). Moderate (normal steady-state rumbling) noise might initiate
the linear instability in certain operational domains, and large
disruptive noise (e.g., an experimental bomb, a large operational
change, a large but temporary rogue injector blockage, or the injector
exit vortex) might trigger the nonlinear instability in some other
operational domain. In those cases, noise or disruptions are typically
only initiators with modest energy levels compared to the energy
of the ultimate oscillation. Startup transients can also initiate
instabilities so that a steady state never comes into existence. The
instability is driven by a coupling between combustion and acoustics,
not by the initiator. Certain relations between the resonant frequency
and the characteristic times associated with the combustion process
are required [2]. The limit-cycle amplitude of the oscillation is also
related to certain parameters describing the combustion process. In
situations in which triggering of an oscillation occurs, the threshold
amplitude (or unstable limit-cycle amplitude) is related to certain
combustion parameters.
A theoretical prediction of triggering was first given by Sirignano

[8] for the longitudinal mode followed by Zinn [9] for the transverse
mode. The approach predicts either a stable or unstable limit cycle for
each point in the n, τ plane near the linear stability limit line. These
early pioneering efforts on nonlinear triggering did not predict the
expected higher-amplitude stable limit cycle in the n, τ domains
where an unstable limit cycle and nonlinear triggering were
predicted. Presumably, if the analyses were extended sufficiently
beyond third-order terms in the amplitude parameter, the stable limit
cycle would be determined.
Determination of the limit-cycle amplitude to lowest order of

accuracy has involved linear combustion and nozzle flow terms
matched against nonlinear gas dynamic terms for both cases with
shocks and without shocks and for both longitudinal and transverse
modes [2,8–10]. These linear terms are the lowest-order approxi-
mations to the forcing and damping of the oscillation. Nonlinear
forcing and damping terms should appear to higher order. Of course,
in computational fluid dynamics (CFD) computations at University
of California, Irvine [11–15], the full nonlinear combustion and
nozzle effects have been considered. In cases in which linear repre-
sentation serves for a first approximation, the qualitative differences
are small between the results using an ad hoc two-parameter combus-
tion model [8,9,16,17] and the results using a physics-based descrip-
tion [10–15,18]; essentially, two parameters can do reasonably well
describing the ratio of the energy-release-rate perturbation to the
pressure perturbation to lowest order.
Culick [6] describes second-order and third-order perturbation

analyses at California Institute of Technology [19–21] that never

756 SIRIGNANO AND KRIEG

D
ow

nl
oa

de
d 

by
 U

C
 I

R
V

IN
E

 o
n 

N
ov

em
be

r 
24

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.B

35
95

4 



predicted triggering action. This is not inconsistent with the
previously described results that indicated that three types of stability
zones could be predicted by any model that predicted the possibility
of triggering. That is, by variation of operating parameters, some of
the previous models [8,9,11,16] predicted a neighboring domain of
unconditional stability and a neighboring domain of unconditional
instability for any bistable domain where triggering occurred.
A complete review has not been attempted here. There are more

detailed reviews of rocket-engine-combustion instability [1,4,6,22].
The goal of this study is to develop a model equation or small

system of equations that describe the essential features of transverse
nonlinear oscillations in cylindrical combustion chambers for
LPREs. There is special interest in studying the nonlinear triggering
phenomenon, using a first-principles description of the combustion
process. It is important to keep in the model the terms that add energy
and damp oscillations or produce a major change to the wave shape.
The injected propellants is considered as preheated and gaseous; two-
phase flows can be considered in the future.

II. Basic Equations for Wave Dynamics

The equations for the chamber wave dynamics will be simplified
by assuming inviscid, non-heat-conducting, non-mass-diffusing
flow. Turbulent fluctuations are considered small compared to
acoustic amplitudes; also, the turbulent length scales are shorter than
the acoustic wavelengths, which allows their neglect. The turbulence
is generated largely by the jets of propellants entering the combustion
chamber, and the length scales are determined by transverse jet
dimensions and spacing between adjacent jets. In contrast, acoustic
wavelengths are determined by themuch larger chamber dimensions.
Furthermore, kinematic waveswith lengths substantially shorter than
the acoustic wavelength can be neglected because they are destroyed
by mixing more quickly. Modern LPRE combustion chambers
operate at supercritical pressure, and some preheating of the
propellants is common due to either the use of propellant as a coolant
or partial preburning to drive a turbopump; thus, a single-phase fluid
is considered with gaseous propellants injected into the combustion
chamber. The mixing and chemical reaction are modelled. For the
transverse mode, amplitude variations in the axial direction of the
cylindrical configuration are considered to be sufficiently small to
facilitate the reduction from a three-dimensional, unsteady problem
to a two-dimensional, unsteady problem.

A. General Formulation of Theory

We use a wave dynamics model previously discussed in the
literature. [2,11–15] Gravity and viscosity are neglected, andE is the
time rate of energy per unit volume that is converted from a chemical
form to a thermal form. A perfect gas and constant specific heats are
assumed. Of course, at very high pressures, there should be
corrections to the gas law, and at high temperatures, the specific heats
should be variable. Nevertheless, the approximation is expected to
allow a good description of the wave dynamics and the combustion
dynamics without missing any primary physics. R is the specific gas
constant for the mixture of gases in the chamber, T is the gas
temperature,a is the speed of sound, cp is the specific heat at constant
pressure, cv is the specific heat at constant volume, and γ � cp∕cv.
Although the temperature and therefore the sound speed vary
significantly through the flame regions of mixing and reaction, we
assume that wave propagation is controlled by the sound speed of the
surrounding high-temperature product gases. Later, we specifically
address small coaxial propellant jet streams of propellants, one jet for
each injector, where the flames reside.
The previously described analysis yields [11]

∂2p
∂t2

− a2
∂2p

∂xj∂xj
� ∂ρ

∂t
∂a2

∂t
� �γ − 1� ∂E

∂t
� a2

∂2�ρujui�
∂xi∂xj

(1)

The left-hand side of the equation represents the wave operator in
three dimensions with a mild nonlinearity appearing through the
coefficient a2. The first and third terms on the right-hand side are

strongly nonlinear terms that are conservative but affect the wave
shape. The second term on the right represents the influence of the
energy conversion and can be a strong driver of the nonlinear
oscillation.

B. Reduction to Two-Dimensional Wave Equation

Now, a two-dimensional model is developed, following Sirignano
and Popov [11], by integratingEq. (1) over the primary flow direction
x3. Focus is on the transverse-mode instability; so, the major
oscillations are in the x1 and x2 directions. A cylindrical combustion
chamber is considered with the injector at x3 � 0 and the nozzle
entrance at x3 � L. Variations of the pressure, velocity, and other
variables in the x3 direction are smaller than variations in other
directions.
Themass flux per unit area flowing from the injectors is considered

to be a function of the local pressure at the exit of the injector, which is
the injector face of the combustion chamber. So, ρu3j0 �
g�p; x1; x2�, where the function g�p; x1; x2� can be determined by
analysis of the flow in the orifice and upstream in the propellant feed
system. For portions of the injector face where no orifice hole
exists, g � 0.
A special nozzle configuration, which is achievable experimen-

tally, is assumed: a multi-orifice flow exit with each orifice in a
perforated plate in the exit plane being a small choked nozzle with a
length much shorter than the oscillation wavelength and a residence
timemuch shorter than the oscillation period.Under these conditions,
the flow through the nozzle is quasi-steady. This nozzle boundary
condition for nonlinear transverse waves was developed by Crocco
and Sirignano [23,24]. The entrance Mach number of the nozzle is
considered to be sufficiently low so that entrance stagnation values
and static values are practically identical. Also, we neglect higher-
order effects of the transverse velocity on the stagnation pressure of
the nozzle inflow.
The pressure variation in the x3 direction may be assumed to be

minor for many transverse oscillations, especially if the mean-flow
Mach numberM ≪ 1. The major variation of pressure will be in the
transverse direction, as indicated by experimental findings [1] and
theory [5,9]. For a pure transverse wave behavior, there is no
acoustical oscillation in the x3 direction; so, only advection can be
expected to producevariations in that flowdirection. Thesevariations
tend to be slow exponential variations according to the theory [5,9].
The nozzle boundary condition provides a first-time-derivative

term that acts as a damping function for the oscillation. It represents
the loss of some of the acoustic energy through the nozzle outflow.
The term with the time derivative of the energy source E can be
described as the forcing function for the oscillation. A combustion
model will be developed to relate that quantity E back to pressure,
temperature, and velocity. The other two nonlinear terms on the right-
hand side of the equation are not dissipative or forcing functions, but
they can have strong influence on the stability, amplitude, and wave
shape for the oscillation.
It is assumed that the averaged pressure, temperature, density, and

sound speed are related by polytropic relations. Additionally,
isentropic relations are used to describe the thermodynamic relations
during the oscillation. For transverse oscillations in a cylindrical
chamber, shock waves do not form [1,2,5,9]. Also, the acoustic
wavelengths are sufficiently long that viscous and diffusive effects
are small, except for a combustion zone near an injector. These
isentropic relations can be used to eliminate density, sound speed, and
temperature from Eq. (1). The neglect of entropy variations in the
determination of the pressure and velocity fields is not a very strong
assumption. While entropy waves and other kinematic waves (e.g.,
flowing vortex structures) have been found significant in other
combustors [6], they have not been found to be significant in LPRE
operations.
It is useful to cast the two-dimensional construction of the wave

dynamics equation in cylindrical polar coordinates because of the
combustion chamber shape. The radial distance from the chamber
centerline and azimuthal position will be represented by r and θ,
respectively. The velocity components are ur and uθ,
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∂2p
∂t2

� B2p
γ−1∕2γ ∂p

∂t
− B1p

γ−1∕γ
�
∂2p
∂r2

� 1

r

∂p
∂r

� 1

r2
∂2p
∂θ2

�

� �γ − 1�
γ

1

p

�
∂p
∂t

�
2

� �γ − 1� ∂E
∂t

� γpγ−1∕γ
�
∂2�p1∕γu2r�

∂r2
� 2

r

∂�p1∕γu2r�
∂r

� 2

r

∂2�p1∕γuruθ�
∂r∂θ

� 2

r2
∂�p1∕γuruθ�

∂θ
� 1

r2
∂2�p1∕γu2θ�

∂θ2

−
1

r

∂�p1∕γu2θ�
∂r

�
(2)

where it is defined that

B1 ≡
a2ss

p
γ−1∕γ
ss

; B2 ≡
assK

Lp
γ−1∕2γ
ss

; K ≡
At

Ae

�
γ � 1

2

�
γ−3∕2�γ−1�

(3)

Note that a one-dimensional isentropic flow analysis yields for the
nozzle throat-to-entrance area ratio, after neglect of terms ofO�M2�,

At

Ae

≈M

�
γ � 1

2

�
γ�1∕2�γ−1�

(4)

whereM is the combustion chamber mean-flow Mach number with
0 < M ≪ 1. Thus, we approximate

K ≈M

�
γ � 1

2

�
; B2 ≈M

γ � 1

2

ass

Lp
γ−1∕2γ
ss

(5)

It is noteworthy that the nondimensional form of the quantityB2 is
small and positive ifM ≪ 1. Equation (2) neglects injector coupling
and keeping the inflowmass flux constant under chamber oscillation.
Popov et al. [13] have shown that injector coupling presents modest
adjustments to the frequency and amplitude. However, a pulsed
injector blockage could trigger an instability.
One may now cast the momentum equations in cylindrical

coordinates to obtain

∂ur
∂t

� ur
∂ur
∂r

� uθ
1

r

∂ur
∂θ

−
u2θ
r
� C

p1∕γ
∂p
∂r

� 0 (6)

and

∂uθ
∂t

� ur
∂uθ
∂r

� uθ
1

r

∂uθ
∂θ

� uruθ
r

� C

rp1∕γ
∂p
∂θ

� 0 (7)

where C ≡ p1∕γ
ss ∕ρss.

Consider a solid circular wall at radius r � R; that is, no acoustic
lining is present. The normal velocity at the wall will be zero; so, the
following boundary conditions apply to the system of Eqs. (2), (6),
and (7):

ur�t; R; θ� � 0;
∂p
∂r

�t; R; θ� � p1∕γu2θ
CR

(8)

Thewave dynamicswill be studied in Sec. III by using a postulated
generalized relation between the heat release rate E and the pressure
p with time delays allowed in the response of E to the pressure
fluctuation. Use will be made later of a specific model of coaxial
injection, turbulent mixing, and chemical reaction. This model will
introduce physics with characteristic times that introduce time
delays.

III. Two-Time-Variable Perturbation Method

The wave dynamics problem, now reduced to two transverse
dimensions, presents the dependent variables as functions of the

dimensional variables t, r, and θwithout any dependence on the axial
coordinate x. We nondimensionalize that reduced wave dynamics
problem described by Eqs. (2), (6), and (7) and solve using the two-
time-variable perturbation expansionmethod. Subscript sswill imply
steady-state values, e.g.,pss, ass, andEss. These valueswill be used to
normalize the dependent variables, creating nondimensional forms:
pressure will be normalized by the steady-state pressure pss, and
velocity components will be normalized by the steady-state speed of
sound ass, both having uniform values over the domain for the wave
dynamics equation. The radial position will be normalized by the
chamber radius R, and time is normalized by R∕ass. From this point
forward, for this section and the following section, the variables t, r,
p,E, ur, and uθ should be interpreted as normalized, nondimensional
quantities. A return in the later sections to dimensional variables
will be made for the purposes of comparison with CFD results
and introduction of the jet-flame model for the energy rate
determination. Note that a2ss � γpss∕ρss, and the mean-flow Mach
number M � uss∕ass.
Two nondimensional time variables are introduced [25]: a fast-

time variable z � ωt on which the oscillations occur and a slow-time
variable τ � σt on which amplitudes and phase slowly change. The
angular frequency of oscillation is ω, and σ is a small positive
quantity that goes to zero as the oscillation amplitude goes to zero. A
dependent variables becomes a function of both variables: e.g.,
p�z; τ; r; θ�. Then, ∂p∕∂t � ω∂p∕∂z� σ∂p∕∂τ. Of course, the
method only allows periodic behavior in the fast-time variable z and
assumes the amplitude and phase will change more slowly. The
method only applies for operating domains where the growth rate or
decay rate (fractional change per unit time) is smaller by at least one
order of magnitude than the oscillation frequency.
Equations (2), (6), and (7) are rewritten in nondimensional terms as

ω2
∂2p
∂z2

−
�
∂2p
∂r2

� 1

r

∂p
∂r

� 1

r2
∂2p
∂θ2

�

� −ωσ
∂2p
∂z∂τ

− σ2
∂2p
∂τ2

� �γ − 1�
�
ω
∂E
∂z

� σ
∂E
∂τ

�

− Bpγ−1∕2γ
�
ω
∂p
∂z

� σ
∂p
∂τ

�
� N (9)

where B is the nondimensional version of the dimensional B2; thus,

B ≈M
γ � 1

2

R

L
(10)

and the nonlinear acoustic terms are given as

N≡ �pγ−1∕γ − 1�
�
∂2p
∂r2

� 1

r

∂p
∂r

� 1

r2
∂2p
∂θ2

�
��γ− 1�

γ

1

p

�
ω
∂p
∂z

� σ
∂p
∂τ

�
2

� γpγ−1∕γ
�
∂2�p1∕γu2r�

∂r2
� 2

r

∂�p1∕γu2r�
∂r

� 2

r

∂2�p1∕γuruθ�
∂r∂θ

� 2

r2
∂�p1∕γuruθ�

∂θ
� 1

r2
∂2�p1∕γu2θ�

∂θ2
−
1

r

∂�p1∕γu2θ�
∂r

�
(11)

The energy rate per volumeEwill be proportional to the mass flux
of propellants for a fixed mixture ratio. For fixed mean values of
chamber pressure and temperature, themass fluxwill be proportional
to the mean-flowMach numberM in the chamber. Thus, the quantity
E can be expected also to go to zero as M → 0. Furthermore,
∂E∕∂t → 0 as the oscillation amplitude and/or M approaches zero.
With the placement of nonlinear terms on the right sides of the

equations, the nondimensional momentum equations become

ω
∂ur
∂z

� 1

γ

∂p
∂r

� −σ
∂ur
∂τ

−
�
ur

∂ur
∂r

� uθ
1

r

∂ur
∂θ

−
u2θ
r

�

� 1

γ

�
1 −

1

p1∕γ

�
∂p
∂r

(12)
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and

ω
∂uθ
∂z

� 1

γr

∂p
∂θ

� −σ
∂uθ
∂τ

−
�
ur

∂uθ
∂r

� uθ
1

r

∂uθ
∂θ

� uruθ
r

�

� 1

γr

�
1 −

1

p1∕γ

�
∂p
∂θ

(13)

The nondimensional boundary conditions are given as

ur�z; τ; 1; θ� � 0;
∂p
∂r

�z; τ; 1; θ� � p1∕γu2θ (14)

An implicit constraint is the solution must remain finite without
any singularity.
A perturbation expansion is assumed with ε as the perturbation

parameter, which is a measure of oscillation amplitude. Specifically,
we take

p� 1� εp1�z;τ; r;θ�� ε2p2�z;τ; r;θ�� ε3p3�z;τ; r;θ��O�ε4�
ur � εur;1�z;τ; r;θ�� ε2ur;2�z;τ; r;θ�� ε3ur;3�z;τ; r;θ��O�ε4�
uθ � εuθ;1�z;τ; r;θ�� ε2uθ;2�z;τ; r;θ�� ε3uθ;3�z;τ; r;θ��O�ε4�
ω�ω0� εω1 � ε2ω2 �O�ε3�

pΓ�γ� � 1� εΓp1 � ε2
�
Γp2 �

Γ�Γ− 1�
2

p2
1

�
�O�ε3� (15)

The zeroeth-order solutions are the steady-state solutions; thus, the
nondimensionalp0 � 1 and ur;0 � uθ;0 � 0. The last relation forpΓ

results from a Taylor series expansion in powers of p − 1, followed
by a substitution of the perturbation series for p.
The values of σ and εwill not be arbitrarily assigned. Rather, terms

in the equations that result from the substitutions of the expansions of
Eq. (15) into the wave and momentum equations governing the fluid
motion will be ordered in a way to maximize the physics that is
brought into the key descriptions of amplitude and phase of the
oscillations. This principlewill force definitions for the values of σ, ε,
ω1, ω2, and other higher order constants. For example, to predict a
behavior for the amplitude of the oscillation that allows determina-
tion of the limit cycle, any derived equation for the amplitude must
balance linear terms with at least one nonlinear term. If we choose
values for σ or ε that do not accomplish the balance, our physical
representation is incomplete. It will be shown later in Secs. III.C and
III.D that ω1 � 0 and σ � M � ε2. For simplicity, those values will
be taken now and proven later.

A. First-Order Equations

Now, we substitute Eq. (15) into Eqs. (9) and (11–13) and separate
according to powers of ε. The resulting first-order equations [i.e.,
O�ε�] become

ω2
0

∂2p1

∂z2
−
�
∂2p1

∂r2
� 1

r

∂p1

∂r
� 1

r2
∂2p1

∂θ2

�

� −�γ − 1�ω0

∂E1;crit

∂z
− Bω0

∂p1

∂z
(16)

ω0

∂ur1
∂z

� 1

γ

∂p1

∂r
� 0 (17)

ω0

∂uθ1
∂z

� 1

γr

∂p1

∂θ
� 0 (18)

ur1�z; τ; 1; θ� � 0;
∂p1

∂r
�z; τ; 1; θ� � 0 (19)

Since the slow-time derivative is forced by its nature to be smaller
and therefore of higher order than the fast-time derivative, the slow-
time derivative does not appear to first order. The resonant modes for
the chamber are described by the homogeneous form of Eq. (16). As
currently stated, a homogeneous solutionwill appear on the right side
as a forcing function. To maintain a finite solution, the two terms on
the right side must cancel. That is, E1;crit is the portion of the first-
order perturbation of energy rate needed to balance the first-order
nozzle damping. Thus, the right side of the equation becomes zero,
yielding only the homogeneous solution. More details about E1 and
E1;crit follow.
An infinite number of modes are possible, implying an infinite

number of solutions for the first-order equations and, consequently,
an infinite number of higher-order solutions. The most common and
most destructive mode for a LPRE is the first tangential spinning
mode, which we select here for examination. If we consider the right
side of Eq. (16) to be zero, the first-order solutions are the classical
results,

p1 � A�τ�J1�s11r� cos�z − θ� ψ�τ��;

ur1 � −
A

γs11

dJ1
dr

sin�z − θ� ψ�;

uθ1 �
A

γs11r
J1 cos�z − θ� ψ� ω0 � s11 � 1.8413

(20)

where J1,A, and ψ are the Bessel function of first kind and first order,
slowly varying amplitude, and slowly varying phase angle,
respectively.
The first five roots s1m of theBessel function J1�s1nr� giving a zero

slope of J1 at r � 1 are s11 � 1.8412, s12 � 5.3313, s13 � 8.5263,
s14 � 11.706, and s15 � 14.864. The lowest eigenvalue has been
taken because it describes the first tangential mode. The other
eigenvalues relate to modes with combined first tangential and first
radial modes, combined first tangential and second radial modes,
combined first tangential and third radial modes, and combined first
tangential and fourth radial modes, respectively. Note that the Bessel
function of the second kind has been discarded because it produces a
singularity at r � 0.

B. Asymptotic Order of Energy Release Rate

The energy release rate E�z; τ; r; θ� must be expanded in a
perturbation series. We consider it to be the sum of a steady-state
portion plus a perturbation caused by the acoustic oscillation.
Thus, E � Ess�r; θ� � E 0�z; τ; r; θ�, and ∂E∕∂t � ∂E 0∕∂t �
ω∂E 0∕∂z� σ∂E 0∕∂τ. Furthermore, we take E 0�z; τ; r; θ� �
E 0�τ; r; z − θ� ψ� for the travelling tangential wave. With the
expectation that E 0 has components in phase and out of phase with
pressure and that its amplitude is related to the pressure amplitude, the
form

E 0�z; τ; r; θ� � Σ∞
n�0ε

nAnfEc;n�r� cos�n�z − θ� ψ��
� Es;n�r� sin�n�z − θ� ψ��g

∂E 0

∂t
� −Σ∞

n�1ε
nAns11nfEc;n�r� sin�n�z − θ� ψ��

� Es;n�r� cos�n�z − θ� ψ��g (21)

is assumed, where the subscripts c and s designate coefficients of
cosine and sine terms, respectively. Set

Ec;1�r� � �Ec;1J1�s11r� � ~Ec;1�r�

�Ec;1 ≡
R
1
0 Ec;1�r�J1�s11r�r drR

1
0 J21�s11r�r dr

~Ec;1�r� ≡ Σ∞
m�2

�R
1
0 Ec;1�r�J1�s1 mr�r drR

1
0 J21�s1 mr�r dr

�
J1m�r� (22)
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Now, we define �Ec;1;excess � � �Ec;1 − �Ec;1;crit�∕ε2, and separate the
coefficient into two parts of different order in ε:

�Ec;1 ≡ �Ec;1;crit � ε2 �Ec;1;excess (23)

The logic for the separation will become evident as we proceed
through Secs. III.C and III.D. Realize that ε appears explicitly in
Eq. (21) with the consequence that the right-side terms of Eq. (23)
appear to first and third orders, respectively.We also consider ~Ec;1�r�
to be of third order. Basically, these terms include components with
cosinusoidal and sinusoidal variations at the fundamental frequency
that can only find balancing terms at odd orders of ε. So, the value of ε
must be determined so that the energy release mechanism appears to
first and third orders. The nondimensional global energy release rate
(i.e., integrated over the volume) is proportional to the nondimen-
sional mass burning rate, which in turn is proportional to the
propellant mass flow. Standard steady-state nozzle flow relations
show that for M ≪ 1 with a constant chamber cross-sectional area,
pressure, and temperature both the mass flux and chamber Mach
number decrease in proportion as throat area increases. Examination
from a different perspective shows the same result: the mass burning
rate is nondimensionalized using steady-state density and sound
speed values in the combustion chamber, and, consequently, the
nondimensional energy release rate is directly proportional to the
chamber mean-flowMach number. This will lead to a matching of ε2

with M. Essentially, we are setting ε � �����
M

p
. Physically, this is

realistic because, as shall be shown in Sec. III.D, the lowest frequency
terms appear only to odd orders in ε. Thereby, the necessary balance
of certain terms is that the amplitudemust adjust to theMach-number
value. The nondimensional amplitudes of the first-tangential-mode
pressure oscillations will be defined as εA�τ�J1�s11r� ������
M

p
A�τ�J1�s11r�. The case with M ≪ 1 is of general practical

interest.
Es;1�r� is also expanded in an eigenfunction series and considered

to be of O�ε2�

Es;1�r� � ε2 �Es;1J1�s11r� � ε2 ~Es;1�r�

�Es;1 ≡
R
1
0 Es;1�r�J1�s11r�r dr
ε2

R
1
0 J21�s11r�r dr

~Es;1�r� ≡ Σ∞
m�2

�R
1
0 Es;1�r�J1�s1mr�r dr
ε2

R
1
0 J21�s1mr�r dr

�
J1m�r� (24)

The result from setting the right side of Eq. (16) to be zero with
substitution from Eqs. (20) and (21) is

�γ − 1�ω0A �Ec;1;critJ1�s11r� sin�z − θ� ψ� � −Bω0

∂p1

∂z
� ABω0J1�s11r� sin�z − θ� ψ� (25)

Thus, the definition for the critical value is obtained whereby
�Ec;1;crit � B∕�γ − 1� and ε2 �Ec;1;excess ≡ �Ec;1 − B∕�γ − 1�. Essen-
tially, the critical value balances the first-order value for the nozzle
damping. The difference of Ec;1 from its critical value, namely,
Ec;1;excess will appear to higher order and will affect the limit-cycle
amplitude. The higher-order terms for nozzle damping will balance
with Ec;1;excess at third order.
The physical interpretation from linear theory is that if �Ec;1 >

�Ec;1;crit any small disturbance causes a growing exponential
oscillation; if �Ec;1 < �Ec;1;crit, any small disturbance causes a decaying
exponential oscillation; and if �Ec;1 � �Ec;1;crit, a neutral oscillation
results. However, exponential solutions cannot predict the nonlinear
limit cycles. We must bring the nonlinear physics into the balance to
predict limit cycles and transients to stable limit cycles or away
from unstable limit cycles. Ec;1;excess will be balanced at higher order
only with the nonlinear terms from the nozzle damping. Since the
only driving and damping mechanisms in the model appear from
combustion and nozzle outflow, respectively, there would only be
potential flow in their absence. An interesting result is that a first-

order (i.e., linear) theory for Ec;1;excess is sufficient for a third-order
analysis of the oscillation by a first-order (i.e., linear) theory for the
oscillatory combustion process.
In the choice of the asymptotic sequence for the expansion here,we

treat B as a parameter to be specified. Only after the perturbation
expansion is applied and the separated equations for each order are
established dowe consider the dependence ofB onM. Essentially,we
have expanded the parameter space and treatedM in some locations
in the analysis as a different parameter from M appearing in other
locations. This can raise mathematical questions on the behavior as ε
goes to the zero limit. However, if the asymptotic series gives a decent
engineering approximation to the behavior, no problem is expected.

C. Second-Order Equations

With the substitution from Eq. (15) into Eqs. (9) and (11–13) and
separation according to powers of ε, the wave equation for the
second-order pressure perturbation is yielded as follows:

ω2
0

∂2p2

∂z2
−
�
∂2p2

∂r2
� 1

r

∂p2

∂r
� 1

r2
∂2p2

∂θ2

�

� N2 � Bs11

�
A2

γ − 1

4γ
J21�s11r� sin�2�z − θ� ψ�� − ∂p2

∂z

�
(26)

where

N2 ≡
γ − 1

γ
p1

�
∂2p1

∂r2
� 1

r

∂p1

∂r
� 1

r2
∂2p1

∂θ2

�
� �γ − 1�

γ

�
s11

∂p1

∂z

�
2

� γ

�
∂2�u2r1�
∂r2

� 2

r

∂�u2r1�
∂r

� 2

r

∂2�ur1uθ1�
∂r∂θ

� 2

r2
∂�ur1uθ1�

∂θ

� 1

r2
∂2�u2θ1�
∂θ2

−
1

r

∂�u2θ1�
∂r

�
(27)

Note that the energy release rate does not appear to this order; nor
do the slow-time derivative terms appear. If these termswere included
to this order, their exclusion by balancing would only give a linear
equation for the temporal behaviors of A�τ� and ψ�τ�. Triggering
thresholds could not be predicted at this order. That is, if �Ec1;excess

were allowed a component ofO�ε� and appeared in this second-order
Eq. (26), there would be a term in its forcing function proportional to
sin�z − θ� ψ�, and this would be the only sine term of that
frequency, other than a slow-time derivative term. (The nozzle
damping represented through the first-time derivative of pressure
manifests at other frequencies in this second-order balance.) This
situation could not be allowed since it causes resonance; however,
forcing the terms to balance only produces a linear ordinary
differential equation for A with an exponential solution. Thus, the
excess energy term and the slow-time derivative must be higher order
in ε as portrayed in Eq. (23). These terms will be allowed to appear to
third order, at which they can be balanced with a nonlinear term,
giving amoremeaningful and broader description of the behavior. By
deferring the appearance of the excess energy release rate and the
slow-time derivatives to third order, we are following the asymptotic
balancing principle of combining as many terms (and accordingly as
much physics) as possible.
The second-order momentum equations are

s11
∂ur2
∂z

� 1

γ

∂p2

∂r
� −

�
ur1

∂ur1
∂r

� uθ1
1

r

∂ur1
∂θ

−
u2θ1
r

�
� 1

γ2
p1

∂p1

∂r
(28)

and
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s11
∂uθ2
∂z

� 1

γr

∂p2

∂θ
� −

�
ur1

∂uθ1
∂r

� uθ1
1

r

∂uθ1
∂θ

� ur1uθ
r

�

� 1

γ2r
p1

∂p1

∂θ
(29)

ur2�z; τ; 1; θ� � 0;
∂p2

∂r
�z; τ; 1; θ� � γu2θ1�z; τ; r; θ� (30)

Now, substitution of the first-order solution from Eq. (20) into
Eq. (27) is possible. Standard trigonometric relations are used for
simplifications; e.g., �cos x�2 � �1∕2��1� cos�2x��. To remove
derivatives from the result, repeated use of the following identity is
made

dJn�s11r�
dr

� n

r
Jn�s11r� − s11Jn�1�s11r� (31)

and the evaluation of N2 yields

N2 � A2q0�r� � A2q2�r� cos�2�z − θ� ψ��

� −A2
Q0�r�
r2

− A2
Q2�r�
r2

cos�2�z − θ� ψ�� (32)

where Qn�r� � −r2qn�r�. The qn�r� functions are defined in
Appendix A.
If ω1 were kept in the expansion, Eq. (26) would have a term with

the product of cos�z − θ� ψ� andω1 on the right side. Furthermore,
it would be the only cosine component with that frequency in the
forcing function of that equation. That situation would force a
resonant solution for p2 that cannot be allowed. Thus, ω1 � 0 is
required.
We have the second-order pressure particular solution to Eq. (26)

created by the N2 forcing function in the form

p�
2 � A2F0�r� � A2F2�r� cos�2�z − θ� ψ�� (33)

The asterisk is used to identify an intermediate (i.e., incomplete)
solution for p2. Substitution of Eq. (33) into Eq. (26) and the
separation according to linearly independent functions of z yield the
ordinary differential equations

r2
d2F0

dr2
� r

dF0

dr
� Q0�r� (34)

and

r2
d2F2

dr2
� r

dF2

dr
� 4�s211r2 − 1�F2 � Q2�r� (35)

Equation (34) can be solved by two successive integrations of first-
order equations using integrating factors. However, another approach
related to the solution of the second-order, radial momentum
equation will be used later in this section.
Equation (35) can be solved by variation of parameters, reducing

the solution to the sum of two quadratures. The homogeneous
solutions to that differential equation are the Bessel function of the
first kind J2�2s11r� and of the second kindY2�2s11r�.With ζ ≡ 2s11r,
the Wronskian is given asW � 2∕�πζ� � 1∕�πs11r� [26]. Thus, the
particular solution is given by

F2�r� � Y2�2s11r�
Z

2s11r

0

J2�ζ�Q2�ζ∕�2s11��
W�ζ��ζ∕�2s11��2

dζ

− J2�2s11r�
Z

2s11r

0

Y2�ζ�Q2�ζ∕�2s11��
W�ζ��ζ∕�2s11��2

dζ

� 2πs211

�
Y2�2s11r�

Z
r

0

J2�2s11r 0�Q2�r 0�
r 0

dr 0

−J2�2s11r�
Z

r

0

Y2�2s11r 0�Q2�r 0�
r 0

dr 0
�

(36)

The first term has a singularity at r � 0 introduced through Y2.
However, an expansion ofQ2�r� for small r shows that it isO�r2� in
the limit as r → 0. Thus, themultiplying integral will behave as r4 for
a small radius, thereby removing the singularity through the product.
In the second term, the integrand is singular, and the integral will be
singular. Again, the product formed with J2 removes the singular
behavior. The lower limits on the integrals are set to zero to avoid
discontinuities at r � 0. That is, a finite value ofF2�0�multiplied by
the cosine function would result in discontinuous behavior
for p2�z; 0; θ�.
The remaining particular solution to Eq. (26) will be obtained

usingp2 ≈ p�
2 to substitute on the right side of that equation, which is

justified because B � O�M�, where the mean-flowMach numberM
is small compared to unity. The forcing function on the right-hand
side of Eq. (26) now becomes

A2q0�r� � A2q2�r� cos�2�z − θ� ψ�� � A2q2s sin�2�z − θ� ψ��

� −
A2

r2
fQ0�r� �Q2�r� cos�2�z − θ� ψ��

�Q2s sin�2�z − θ� ψ��g
(37)

where

Q2s ≡ −Bs11r2
�
2F2�r� �

γ − 1

4γ
J21�s11r�

�
(38)

Consideration of the additional term in the forcing function for
Eq. (26) implies that an additional particular solution of the form
F2s�r� sin�2�z − θ� ψ�� must be added to the solution. The
differential equation for F2s is

r2
d2F2s

dr2
� r

dF2s

dr
� 4�s211r2 − 1�F2s � Q2s�r�

� −Bs11r2
�
2F2�r� �

γ − 1

4γ
J21�s11r�

�
(39)

Now, with substitution from Eq. (36), we determine the solution
F2s for Eq. (39) using the variation-of-parameters method:

F2s�r� � 2πs211

�
Y2�2s11r�

Z
r

0

J2�2s11r 0�Q2s�r 0�
r 0

dr 0

−J2�2s11r�
Z

r

0

Y2�2s11r 0�Q2s�r 0�
r 0

dr 0
�

(40)

For similar reasons to those for theF2 case, we have no singularity
in this solution for F2s.
Adding F2s sin �2�z − θ� ψ�� to p�

2 from Eq. (33), we now have

p2 � A2F0�r� � A2F2�r� cos�2�z − θ� ψ��
� A2F2s�r� sin�2�z − θ� ψ�� (41)

In the following analysis, the argument for any Jn Bessel function
will be implied to be s11r unless explicitly defined as otherwise. The
solution of Eq. (28) for ur2 can be obtained by first substituting
solutions for ur1, uθ1, and p2 to obtain
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∂ur2
∂z

� A2

γ2s211

�
J1J2
r2

−
s11J

2
2

2r
− γs11

dF2

dr

�
cos�2�z − θ� ψ��

−
A2

γs11

dF2s

dr
sin�2�z − θ� ψ��

� A2

γs11

�
−
dF0

dr
� 1

γ

�
1 −

1

s211r
2

�
J1

dJ1
dr

� 1

2γrs211

��
dJ1
dr

�
2

�
�
J1
r

�
2
��

(42)

Now, to prevent ur2 from growing toward infinity with
transformed time z, it is necessary that the last line of the previous
equation becomes identically zero. Thus, F0 must satisfy the first-
order differential equation

dF0

dr
� 1

γ

�
1 −

1

s211r
2

�
J1

dJ1
dr

� 1

2γrs211

��
dJ1
dr

�
2

�
�
J1
r

�
2
�

(43)

It can be shown by differentiation and substitution into Eq. (34)
that if F0 satisfies Eq. (43) it also satisfies Eq. (34). With expected
uniqueness for the solution to the differential equation, the solution
satisfies both the differential equation (34) and the condition (43). So,
there is no conflict between Eqs. (34) and (43), and the solution for
ur2 becomes

ur2 � A2G2�r� sin�2�z − θ� ψ�� � A2G2s�r� cos�2�z − θ� ψ��

G2�r� ≡
1

2γ2s211

�
J1J2
r2

−
s11J

2
2

2r
− γs11

dF2

dr

�
;

G2s�r� ≡
1

2γs11

dF2s

dr
(44)

The solution of Eq. (29) for uθ2 can readily be obtained by
substituting solutions for ur1, uθ1, and p2 and integrating over z. The
constant of integration (actually allowed to be a function of r) is set to
zero by the condition of zero vorticity (zero circulation) to this order
of the perturbation series. The result is

uθ2 � A2H2�r� cos�2�z − θ� ψ�� � A2H2s�r� sin�2�z − θ� ψ��

H2�r� ≡
1

γs11r

�
F2 �

J21 − J22
4γ

� J1J2
2γs11r

�
;

H2s�r� ≡
1

γs11r
F2s (45)

Equation (43) can be integrated to obtain F0 with the result

F0 � K � J21
2γ

� 1

2γ

Z
r

0

�
J22
r 0

−
2J1J2
s11�r 0�2

�
dr 0 (46)

The constant of integration K can be determined by the constraint
that the instantaneous value of the integral of the density over the
chamber volume remains constant during pressure oscillation,
yielding the same mass as given in steady-state operation. In
particular, density is related to pressure through an isentropic
approximation, and using Eq. (15) with Γ � γ, an expansion for
density through second order is obtained and integrated over the
chamber volume. All terms with sine and cosine functions integrate
to zero. Thus, we have

Z
1

0

rF0 dr �
γ − 1

4γ

Z
1

0

rJ21 dr (47)

Consequently,

K � γ − 3

2γ

Z
1

0

rJ21 dr�
1

γ

Z
1

0

�Z
r

0

�
2J1J2
s11�r 0�2

−
J22
r 0

�
dr 0

�
r dr (48)

D. Third-Order Equations

Following the established pattern, the wave equation for the third-
order pressure perturbation is obtained following the substitution
from Eq. (15) into Eqs. (9) and (11–13) and separation according to
powers of ε. The condition σ�ε� � ε2 has been taken, thereby
introducing the slow time derivatives in the third-order equations. At
this third order, there will be other sine and cosine terms of the basic
frequency appearing in the forcing function to balance the terms
proportional to σ. These proportional terms involve derivatives of
amplitude A and phase ψ with respect to the slow time. Thus,
σ�ε� � ε2 is chosen, following the established principle in asymp-
totic analysis to choose orders so as to include and balance the most
terms (and thereby the most physics). Similarly, the frequency
correction ω2 is included here in the balance.
The third-order equations follow:

ω2
0

∂2p3

∂z2
−
�
∂2p3

∂r2
� 1

r

∂p3

∂r
� 1

r2
∂2p3

∂θ2

�

� −2ω0ω2

∂2p1

∂z2
− ω0

∂2p1

∂z∂τ
� �γ − 1�ω0

∂E3

∂z

− Bω0

�
∂p3

∂z
� γ − 1

2γ

�
p2

∂p1

∂z
� p1

∂p2

∂z

�
� γ2 − 1

8γ2
p2
1

∂p1

∂z

�
� N3 (49)

N3 ≡
γ − 1

γ
p1

�
∂2p2

∂r2
� 1

r

∂p2

∂r
� 1

r2
∂2p2

∂θ2

�

�
�
γ − 1

γ
p2 −

γ − 1

2γ2
p2
1

��
∂2p1

∂r2
� 1

r

∂p1

∂r
� 1

r2
∂2p1

∂θ2

�

� 2�γ − 1�
γ

�
ω2
0

∂p1

∂z
∂p2

∂z

�
−
�γ − 1�

γ
p1

�
ω0

∂p1

∂z

�
2

� 2γ

�
∂2�ur1ur2�

∂r2
� 2

r

∂�ur1ur2�
∂r

� 1

r

∂2�ur2uθ1 � ur1uθ2�
∂r∂θ

� 1

r2
∂�ur2uθ1 � ur1uθ2�

∂θ
� 1

r2
∂2�uθ1uθ2�

∂θ2
−
1

r

∂�uθ1uθ2�
∂r

�

� �γ − 1�p1

�
∂2�u2r1�
∂r2

� 2

r

∂�u2r1�
∂r

� 2

r

∂2�ur1uθ1�
∂r∂θ

� 2

r2
∂�ur1uθ1�

∂θ
� 1

r2
∂2�u2θ1�
∂θ2

−
1

r

∂�u2θ1�
∂r

�

�
�
∂2�p1u

2
r1�

∂r2
� 2

r

∂�p1u
2
r1�

∂r
� 2

r

∂2�p1ur1uθ1�
∂r∂θ

� 2

r2
∂�p1ur1uθ1�

∂θ
� 1

r2
∂2�p1u

2
θ1�

∂θ2
−
1

r

∂�p1u
2
θ1�

∂r

�
(50)

∂p3

∂r
�z; τ; 1; θ� � 2uθ1uθ2 �

1

γ
p1u

2
θ1 (51)

The first- and second-order solutionsmay be substituted intoN3 to
yield
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N3�r; z − θ� ψ� � A3q1�r� cos�z − θ� ψ�
� A3q3�r� cos�3�z − θ� ψ��
� A3q1s�r� sin�z − θ� ψ� � A3q3s�r� sin�3�z − θ� ψ�� (52)

where the qn�r� functions are defined in Appendix A.
The derivatives ofF2 andF2s can be obtained by differentiation of

the relations given in Eqs. (36) and (40). Then, the second derivatives
can be obtained in terms ofF2 andF2s from the differential equations,
(35) and (39). The functions G2, G2s, H2, and H2s can be
differentiated directly from their forms in Eqs. (44) and (45).
Equation (31) is repeatedly used to replace derivatives of Bessel
functions. See the results for those substitutions and analytical steps
in Appendix A.
Using the functions q1, q1s, q3, and q3s defined inAppendixA, the

forcing function on the right side of Eq. (49) is given by

− s11A�γ− 1� �Ec;1;excessJ1�s11r� sin�z− θ�ψ�
� s11A�γ− 1� �Es;1J1�s11r�cos�z− θ�ψ�
� 2s11ω2AJ1�s11r�cos�z− θ�ψ�

� s11
dA

dτ
J1�s11r� sin�z− θ�ψ�

� dψ

dτ
s11AJ1�s11r�cos�z− θ�ψ�

−A3Bs11

�
∂p3

∂z
� γ− 1

4γ
�2F0J1 �F2J1� sin�z− θ�ψ �

� 3
γ− 1

4γ
F2J1 sin�3�z− θ�ψ��

�

−A3Bs11

�
γ2 − 1

32γ2
J31 sin�z− θ�ψ�� γ2 − 1

32γ2
J31 sin�3�z− θ�ψ��

�
�A3q1�r�cos�z− θ�ψ��A3q3�r�cos�3�z− θ�ψ��
�A3q1s�r� sin�z− θ�ψ��A3q3s�r� sin�3�z− θ�ψ�� (53)

The J1 sin�z − θ� ψ� and J1 cos�z − θ� ψ� eigenfunction
terms cannot appear in the forcing function because they are
homogeneous solutions for the partial differential equation (49).
Their appearance would cause nonlinear resonance and not allow
periodic solutions in the fast variable. So, the coefficients of those two
eigenfunctions must be collected and balanced to give zero value.
Thus, two constraints are established,

dA

dτ
� A�γ − 1� �Ec;1;excess

� A3B

�
γ − 1

4γ

R
1
0 �2F0J

2
1 � F2J

2
1�r drR

1
0 J21r dr

� γ2 − 1

32γ2

R
1
0 J41r drR
1
0 J21r dr

�

− A3

R
1
0 q1s�r�J1�s11r�r dr
s11

R
1
0 J21�s11r�r dr

(54)

dψ

dτ
� −2ω2 − �γ − 1� �Es;1 − A2

R
1
0 q1�r�J1�s11r�r dr
s11

R
1
0 J21�s11r�r dr

(55)

and the modified third-order wave equation becomes

ω2
0

∂2p3

∂z2
−
�
∂2p3

∂r2
�1

r

∂p3

∂r
� 1

r2
∂2p3

∂θ2

�

�−A3Bs11

�
∂p3

∂z
�3

γ−1

4γ
F2J1 sin�3�z−θ�ψ��

�

−A3Bs11
γ2−1

32γ2
J31 sin�3�z−θ�ψ��

�A3Bs11
γ−1

4γ

X
m≠1

R
1
0 �2F0J1�s11r��F2J1�s11r��J1�s1mr�rdrR

1
0 J

2
1�s1mr�rdr

×J1�s1mr�sin�z−θ�ψ�

−A3Bs11
γ2−1

32γ2
X
m≠1

R
1
0 J

3
1�s11r�J1�s1mr�rdrR
1
0 J

2
1�s1mr�rdr

J1�s1mr�sin�z−θ�ψ�

�A3
X
m≠1

R
1
0 q1�r�J1�s1mr�rdr
s11

R
1
0 J

2
1�s1mr�rdr

J1�s1mr�cos�z−θ�ψ�

�A3q3�r�cos�3�z−θ�ψ��

�A3
X
m≠1

R
1
0 q1s�r�J1�s1mr�rdr
s11

R
1
0 J

2
1�s1mr�rdr

J1�s1mr�sin�z−θ�ψ�

�A3q3s�r�sin�3�z−θ�ψ�� (56)

It is not necessary to obtain the solutions for p3, uθ3, and ur3 in
order to achieve the first approximation at growth and decay rates of
the oscillation. The limit-cycle amplitude A� and frequency
perturbation ω2 are given by setting the derivatives in Eqs. (54) and
(55) equal to zero:

A�2 � �γ − 1� �Ec;1;excess

�R
1
0 q1s�r�J1�s11r�r dr
s11

R
1
0 J21�s11r�r dr

−B
�
γ − 1

4γ

R
1
0 �2F0J1 � F2J1�r drR

1
0 J21r dr

� γ2 − 1

32γ2

R
1
0 J41r drR
1
0 J21r dr

��
− 1

(57)

ω2 � −�γ − 1� �Es;1 − A�2
R
1
0 q1�r�J1�s11r�r dr
2s11

R
1
0 J21�s11r�r dr

(58)

Integration of Eqs. (54) and (55) with prescribed initial conditions
will yield transient solutions. The sign of dA∕dτ will change at the
value of A � A� giving the limit-cycle amplitude. Depending on the
direction of the change, the stability of the limit cycle is determined. If
the derivative is positive (negative) for A > A� and negative
(positive) for A < A�, we have an unstable (stable) limit cycle. In
Sec. VI, �Ec;1 and �Es;1 are determined for the case of multiple coaxial
injection of gaseous propellants.

IV. Solutions for Amplitude and Phase

Let us recast the Eqs. (54) and (55). Define

k1 ≡ �γ − 1� �Ec;1;excess;

k2 ≡ B

�
γ − 1

4γ

R
1
0 �2F0J1 � F2J1�r drR

1
0 J21r dr

� γ2 − 1

32γ2

R
1
0 J41r drR
1
0 J21r dr

�

−
R
1
0 q1s�r�J1�s11r�r dr
s11

R
1
0 J21�s11r�r dr

; k3 ≡ �γ − 1� �Es;1;

k4 ≡
R
1
0 q1�r�J1�s11r�r dr
s11

R
1
0 J21�s11r�r dr

(59)

Then, Eqs. (54) and (55) become

dA

dτ
� k1A� k2A

3 (60)
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dψ

dτ
� −2ω2 − k3 − k4A

2 (61)

The quantities k1A and k3 result from the linear (i.e., first-order)
evaluations of the in-phase excess energy release rate and out-of-
phase excess energy release rate, respectively. The quantity k2A

3

(k4A
2) results from third-order nonlinear in-phase (out-of-phase)

contribution from nozzle damping. The parameter k1 may take either
sign depending on whether the combustion driving the contribution
exceeds the linear nozzle damping (for k1 > 0) or not (for k1 < 0). It
follows from the definition that k2 is directly proportional to B and,
from calculation, is always positive.
Analytical solutions can be found for these two first-order ordinary

differential equations. With no loss of generality, take A � A0 and
ψ � 0 as the initial values. For Eq. (60), separate variables, and
recognize that certain differentials of logarithmic terms can be readily
constructed. The integrated solution becomes, after some algebraic
manipulations,

A�τ�
A0

�
��

1� k2
k1

A2
0

�
e−2k1τ −

k2
k1

A2
0

�−1∕2
(62)

Consider first the case in which k1 and k2 have identical signs, i.e.,
k1 > 0 and k2 > 0 (Case I). The solution for A goes to infinity in a
finite time. Under this condition of unconditional instability in Case I
with both k1 and k2 having positive values, a stable limit cycle is
expected in practice. However, the perturbation series has not yet
included sufficiently high powers of ε andA to predict the stable limit
cycle. So, the solution is artificially predicted to grow to infinite
amplitude in a finite time. Rather, if higher-order analysis were
applied, the amplitude solution would be expected to grow to a finite
stable amplitude in an infinite time. For example, if anA5 termwith a
negative coefficient were added to the right side of Eq. (60), a stable
limit cycle could result.
If k1 and k2 have opposite signs, a limit cycle clearly exists at

A � A� ≡
����������������
−k1∕k2

p
, where the time derivative becomes zero. For a

more informative display, we may rewrite Eq. (62) as

A�τ�
A0

�
��

1 −
�
A0

A�

�
2
�
e−2k1τ �

�
A0

A�

�
2
�−1∕2

(63)

If k1 < 0, k2 > 0, andA0 < A� (Case IIa), the solution forA decays
to zero value as τ → ∞, while the solution forA grows to infinity in a
finite time if k1 < 0, k2 > 0, and A0 > A� (Case IIb). (Note that
mathematically in either Case IIa or IIb, the value ofA� is approached
as τ → −∞.) In Case II here, the limit cycle atA� is unstable. A stable
limit cycle should exist at a higher value ofA > A�, but the truncated
perturbation series does not reveal it. So, again the predicted growth
to infinity in a finite time is artificial; rather, growth in an infinite time
to a finite stable value is expected. The reversed signs indicate a
bistable behavior with conditional stability. Again, if anA5 termwith
a negative coefficient were added to the right side of Eq. (60) as a
result of higher-order analysis, a stable limit cycle as well as the
unstable limit cycle could result.
The frequency perturbation that applies in the limit cycle in which ψ

ceases to vary with time is ω2; thus, its value can be determined from
Eq. (61) as a function ofA� to beω2 � −�k3 � k4A

�2�∕2.Note thatω2

can be simply ignored in those cases inwhich a limit cycle is not found.
Equation (61) is readily solved by integration of a simple quad-

rature after substitution for A using Eq. (62). The value for ω2 can be
substituted back again into that same equation. In particular, one
obtains

ψ � −�2ω2 � k3�τ − k4

Z
τ

0

A2�τ 0� dτ 0

� k4A
�2τ� k4

2k2
ln

�
1� k2

k1
A2
0�1 − e2k1τ�

�
(64)

Substitution in the argument of the logarithmic function, using
Eq. (62), yields

ψ � k4A
�2τ� k4

2k2
ln

��
A0

A

�
2

e2k1τ
�

� k4A
�2τ − k4A

�2τ� k4
2k2

ln

��
A0

A

�
2
�
� k4

2k2
ln

��
A0

A

�
2
�

A → A� ⇒ ψ →
k4
2k2

ln

��
A0

A�

�
2
�

(65)

V. Comparison with Computational Fluid Dynamics
Results

The direct CFD solution of Eqs. (2), (6), and (7) has been
performed [11–13]. In unpublished work by Popov et al., results for
the postprocessing fitting of that CFD data show that the behavior
d ~A∕d~t � C1

~A� C2
~A3 applies in the lower-amplitude region. The

coefficient C1 could be negative or positive, depending on the
simulated operational domain. C2 was always positive. For larger
amplitudes, higher-degree polynomials were needed for the fitting.
Some qualitative comparison of the results from perturbation theory
with the CFD results are useful. For this purpose, we reformulate
Eqs. (60) and (61) in dimensional terms in which the dimensional
time ~t � Rτ

assε
2 � Rτ

assM
, the dimensional mean-to-peak pressure

amplitude of the major eigenfunction ~A � εApss �
�����
M

p
Apss, and

the perturbed dimensional frequency of the limit cycle
~ω � assε

2ω2

R � assMω2

R . Now,

d ~A

d~t
� Massk1

R
~A� k2ass

p2
ssR

~A3 (66)

and

dψ

d~t
� −2 ~ω −

Massk3
R

−
k4ass
p2
ssR

~A2 (67)

Mk1 andMk3 can be written as

Mk1 ≡M�γ − 1� �Ec;1;excess � �γ − 1�V3

2

�XN
i�1

Ai

�
− B

Mk3 ≡M�γ − 1� �Es;1 �
V4

2

�XN
i�1

Ai

�
(68)

The direct CFD solution of Eqs. (2), (6), and (7) has been
performed [11–13]. In unpublished work, results for the
postprocessing fitting of that CFD data with the behavior d ~A∕d~t �
C1

~A� C2
~A3 have been obtained for certain cases. The coefficientC1

could be negative or positive, depending on the operational domain.
C2 was always positive.
The multiplication of cos mx or sin mx with cos nx or sin nx

where m and n are positive, nonzero integers gives products of the
form cos�m − n�x, sin�m − n�x, cos�m� n�x, and sin�m� n�x.
Recognition of this pattern leads to the expectation that higher-order
(beyond third order) perturbation analysis would yield the
generalized relations d ~A∕d~t � ΣN

n�1Cn
~A2n−1 and dψ∕dt �

ΣN
n�1Kn

~A2n−2. One could attempt to match the computational data
using a differential equation that has a higher-order polynomial on the
right side than the third-degree polynomial of Eq. (66). The
generalized relation can be rewritten as d ~A2∕d~t � 2ΣN

n�1Cn� ~A2�n.
Thus, the limit-cycle amplitude is given as the solution of
ΣN
n�1Cn� ~A2�n−1 � 0. In Eq. (66), with only two terms, only one

solution for ~A2 can be found, explaining why both a stable limit cycle
and an unstable limit cycle were not obtained. With three or more
terms on the right side of the generalized version of Eq. (66), it
becomes possible to find more solutions and determine both limit
cycles.
In the form of Eqs. (66) and (67), the limit-cycle amplitude ~A� and

frequency modification ~ω� are determined when the derivatives
becomes zero; thus,
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~A� � pss

��������������
−
Mk1
k2

s
; ~ω� � Mk1k4ass

2k2R
−
Massk3
2R

(69)

This result predicts that the limit-cycle mean-to-peak dimensional
pressure amplitude ~A scales roughly as pss

�����
M

p
. However, there are

additional Mach-number dependencies from k1 and k2; see the
definitions of k1 and k2 in Eq. (59). The Mach number at the nozzle
entrance scales roughly as throat area At for a small Mach number
(M ≪ 1), while the steady-state chamber pressure scales as the
reciprocal of At [24]. Therefore, one should be able to vary At at
constantmass flow and show that ~A ∝ A−1∕2

t . Thereby, for example, a
100% increase in the nozzle throat area produces a nearly 30%
decrease in the dimensionalmean-to-peak limit-cycle amplitude but a
40% increase in the nondimensional amplitude. According to
Eq. (69), the frequency perturbation at the limit cycle ~ω� should vary
withM (or At).
Themethod here addresses a common case in which thewaveform

consists of a basic resonantmode of oscillationwith the superposition
of a fundamental mode described by linear theory and the harmonics
of that mode. Although we used the travelling first tangential mode,
the method could be used for other tangential modes, radial modes,
and mixed radial–tangential modes, including both standing and
travelling modes. Situations in which more than one fundamental
mode appear with noninteger frequency ratios become more difficult
to treat but can be treated by a generalization of the approach here.
These situations would produce “wobbly” waveforms for which the
solutions cannot be expressed in terms of a single frequency. Energy
transfer between these fundamental resonantmodeswould occur, and
subharmonics might be produced.

VI. Integration of Chamber Dynamics and N Coaxial
Jet Flames

The model for an oscillating coaxial jet turbulent diffusion flame
developed by Sirignano and Krieg [27] will be used to describe the
mass burning rate and, accordingly, the rate of energy release per unit
volume. Only the salient results of that theory are given here; the
reader can pursue details in the reference. The steady-state fuel-mass-
burning rate associated with the injector is given as

�_m � 2π �D
pss

Rs

Z
Lf

0

Rf�x�V1�x�
�Tf�x�

dx (70)

The total chamber steady-state fuel-mass-burning rate with N
identical injectors isN �_m. The total mass flow rate for injection at the
stoichiometricmass ratio is ��ν� 1�∕ν�N �_m. However, no assumption
about the overall mixture ratio has been made. Rich or lean flows can
be analyzed. The integrated fuel-mass-burning-rate perturbation for
the injector depends on both the instantaneous pressure perturbation
and the pressure perturbation at the time of injection for each discrete
element of mass. Namely,

_m 0�t� � γ − 1

γ

p 0�t�
pss

Z
Lf

0

d �_m

dx

�
1 −

Tss;∞
�Tf�x�

�
dx

−
γ − 1

γ

�
Ti0

Tss;∞
− 1

� Z
Lf

0

Tss;∞
�Tf�x�

p 0�t − x∕ �U�
pss

d �_m

dx
V2�x� dx (71)

The downstream distance for the coaxial jet flame is x. The
functions V1�x� and V2�x�, the flame radial position Rf�x�, and the
flame temperature Tf�x� are reported by Sirignano and Krieg [27].
The individual injectors experience different pressure histories,

depending on their locations. We assume the same design for each
injector. Thus, the steady-state mass burning rate, flame temperature,
and flame length do not vary from one injector stream to another
stream.
Now, to be consistent with the wave dynamics perturbation

analysis, the results for the oscillating burning rate should be cast in
nondimensional terms. For an injector location centered at the

nondimensional position ri, θi with i � 1; 2; 3; : : : N, the pressure
terms in Eq. (71) become

p 0�t; ri; θi�
pss

� εAJ1�s11ri� cos�z − θi � ψ�

p 0�t − x∕ �U; ri; θi�
pss

� εAJ1�s11ri� cos�z − s11x∕ �U − θi � ψ�

� εAJ1�s11ri��cos�s11x∕ �U� cos�z − θi � ψ�
� sin�s11x∕ �U� sin�z − θi � ψ�� (72)

where x and �U are now normalized using the chamber radius R and
the steady-state sound speed ass.
The perturbation of the energy release rate is obtained as follows.

Define the steady-state energy rate as �E � Q �_m and the energy-rate
perturbation for the individual injector asEi 0 � Q _m 0, whereQ is the
fuel-heating value. Normalize these energy rates by the quantity
pssassR

2. Substitute Eq. (72) into Eq. (71), multiply by Q, and
perform the normalization to yield an expression for E 0

i . At the scale
of the chamber wave dynamics, the burning rate is taken as a delta
function at the point ri, θi, namely, δ�r − ri; θ − θi�. The perturbation
of the nondimensional energy release rate for the ith injector becomes

E 0
i �z; ri; θi� �

γ − 1

γ
εAJ1�s11ri�δ�r − ri; θ − θi�

×
�
cos�z − θi � ψ�

�Z
Lf

0

d �E

dx

�
1 −

Tss;∞
�Tf�x�

�
dx

�
�
1 −

Ti0

Tss;∞

�Z
Lf

0

Tss;∞
�Tf�x�

cos�s11x∕ �U� d
�E

dx
V2�x� dx

�

� sin�z − θi � ψ�
�
1 −

Ti0

Tss;∞

�

×
Z

Lf

0

Tss;∞
�Tf�x�

sin�s11x∕ �U� d
�E

dx
V2�x� dx

�

� εAJ1�s11ri�δ�r − ri; θ − θi��V3 cos�z − θi � ψ�
� V4 sin�z − θi � ψ�� (73)

where x andLf are normalized byR and the definitions forV3 andV4

are

V3 ≡
γ − 1

γ

�Z
Lf

0

d �E

dx

�
1 −

Tss;∞
�Tf�x�

�
dx

�
�
1 −

Ti0

Tss;∞

�Z
Lf

0

Tss;∞
�Tf�x�

cos�s11x∕ �U� d
�E

dx
V2�x� dx

�

V4 ≡
γ − 1

γ

�
1 −

Ti0

Tss;∞

�Z
Lf

0

Tss;∞
�Tf�x�

sin�s11x∕ �U� d
�E

dx
V2�x� dx (74)

The two integrals in Eq. (74) with the sinusoidal and cosinusoidal
functions of s11x∕ �U (i.e., kinematic waveforms) in the integrand can
be expected to be small because the short kinematic wavelength leads
to substantial cancellation in the integration over the flame lengthLf.
Comparison among Eqs. (21), (73), and (74) gives support to the
assumption made earlier that j �Ec;1j ≫ j �Es;1j.
If the pressure fluctuation at the injector and the energy-release-

rate fluctuation of the jet flame are described, respectively, by p 0 �
Peiωt and E 0 � E1e

iωt, then the nondimensional linear response
coefficient can be constructed for an individual injector as a complex
number using the imaginary unit i by taking the ratio of E 0 and p 0,

E 0

p 0 �
E1

P
� V3 − iV4 (75)

This complex quantity is named the combustion response factor; it
provides information about the in-phase response of the energy
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release rate to a pressure fluctuation through V3 and the out-of-phase
response of the energy release rate to a pressure fluctuation through
V4. The combustion response factor is commonly expressed in
complex notation for linear analyses, but that form is not very useful
for a nonlinear analysis. Since the physical interest is in the real part of
the number, squares and products of the complex numbers are not
relevant. Thus, complex notation is avoided here, and instead the in-
phase V3 and out-of-phase V4 components are each addressed
separately.
The total energy-release-rate perturbation is determined by

summing the contribution of theN individual injectors fromEq. (73),
which yields

E 0 � ΣN
i�1E

0
i �z; ri; θ� (76)

Now, the right side of Eq. (76) will be expanded in an
eigenfunction series using products of Bessel functions of the first
kind and first order (i.e., J1) and their corresponding sinusoidal
and cosinusoidal functions. For convenience, use the identities
cos�z − θi � ψ� � cos�z� ψ� cos θi � sin�z� ψ� sin θi and
sin�z − θi � ψ� � sin�z� ψ� cos θi − cos�z� ψ� sin θi. Some
convenient definitions are

ai≡
R
2π
0

R
1
0 δ�r− ri;θ−θi�J1�s11ri�cos θiJ1�s11r�cos θrdrdθ

π
R
1
0 J

2
1�s11r�rdr

� J21�s11ri�cos2 θi
π
R
1
0 J

2
1�s11r�rdr

;

bi≡
R
2π
0

R
1
0 δ�r− ri;θ−θi�J1�s11ri�sin θiJ1�s11r�sin θrdrdθ

π
R
1
0 J

2
1�s11r�rdr

� J21�s11ri�sin2 θi
π
R
1
0 J

2
1�s11r�rdr

; Ai≡ai�bi �
J21�s11ri�

π
R
1
0 J

2
1�s11r�rdr

(77)

Only the lowest-frequency terms in the eigenfunction expansion
will be a factor in driving the lowest harmonic of the chamber
oscillation and will be kept here. The other terms can influence the
higher-order higher frequency harmonics. Those higher-order effects
are beyond the current considerations. The leading (i.e., lowest-
frequency) terms in the eigenfunction expansion with account for
contributions from all N injectors are represented as

E1�z; r; θ� � εAJ1�s11r�
�
V3

�XN
i�1

ai

�
cos�z� ψ� cos θ

� V3

�XN
i�1

bi

�
sin�z� ψ� sin θ� V4

�XN
i�1

ai

�
sin�z� ψ� cos θ

− V4

�XN
i�1

bi

�
cos�z� ψ� sin θ

�

� εAJ1�s11r�
�
V3

2

�XN
i�1

Ai

�
cos�z − θ� ψ�

� V3

2

�XN
i�1

Ai cos�2θi�
�
cos�z� θ� ψ�

� V4

2

�XN
i�1

Ai cos�2θi�
�
sin�z� θ� ψ�

� V4

2

�XN
i�1

Ai

�
sin�z − θ� ψ�

�

E1�z; r; θ� ≈ εAJ1�s11r�
�
V3

2

�XN
i�1

Ai

�
cos�z − θ� ψ�

� V4

2

�XN
i�1

Ai

�
sin�z − θ� ψ�

�
(78)

After integration with the Dirac delta function, E1�z; r; θ� is now a
measure of the fluctuation in the time rate of energy per unit volume.
Equation (78) shows that the burning rate and energy release rate have
waveforms travelling in both θ directions. However, the summations
in the coefficients for the waves travelling in the negative θ direction
have a mixture of positive and negative signs due to the presence of
the cos�2θi� factor. Therefore, the net effect of negative-θwave travel
is diminished, and we need deal only with the dominant positive-θ
direction, as indicated by the final approximation in Eq. (78).
Comparison of the coefficients in Eqs. (22) and (24) with Eq. (78)

leads to the results

�Ec;1 �
V3

2

�XN
i�1

Ai

�
; �Ec;1;excess �

1

M

�
V3

2

�XN
i�1

Ai

�
−

B

γ − 1

�
;

�Es;1 �
1

M

V4

2

�XN
i�1

Ai

�
(79)

These results may now be used for substitution in Eqs. (54)
and (55).

VII. Results

Results are presented for the specific example with coaxial
injectors, demonstrating the matching process between wave
dynamics and the injection/combustion mechanisms with N coaxial
injectors and associated jet flames. Calculations have been made to
analyze the solutions for the amplitude and phase as functions of time
using the perturbation theory. The results are obtained using the
oscillating coaxial jet turbulent diffusion flame model developed by
Sirignano and Krieg [27]. Results are presented here considering
methane and gaseous-oxygen propellantswith a fuel-to-oxygenmass
stoichiometric coefficient of 1∕4. The ratio of specific heats γ � 1.3
and steady-state pressure of 200 atm have been chosen. For all
calculations, the quantity Q∕�cpTi0� � 64.5 remains constant. A
combustion chamber diameter of 0.28m and chamber length of 0.5m
are considered.
Different cases are considered to gain a representative picture of

the possible outcomes. For the base case, the mean flow chamber
Mach number is varied, considering a combustion chamber
consisting of ten injectors, each with an outer radius of 1.1 cm and
inner radius of 0.898 cm. The fuel and oxidizer leave each injector
with an axial velocity of 200 m∕s. Six of the ten injectors are placed
everyπ∕3 rad at a radial position of �3∕4�R, three injectors are placed
every 2π∕3 rad at a radial position of �1∕2�R, and the last injector is
placed at the center of the chamber. This is the same ten-injector setup
analyzed and portrayed by Sirignano and Popov [11].
Four different parameter surveys are performed. For Surveys 1–3,

the mean flow chamber Mach number is kept fixed at 0.066, and the
same ten-injector configuration is analyzed. For Survey 1, the ratio of
the outer injector radius to the inner injector radius is kept fixed so
that the mixture ratio is the same as in the base case. The magnitudes
of the injector radii are varied, keeping themass flux factorUR2

o fixed
with the same value as in the base case. For Survey 2, the outer
injector radius is kept at 1.1 cmwith an axial velocity of 200m/s. The
mixture ratio is varied by changing the inner radius of the injector. For
Survey 3, the ratio of the steady-state mean chamber-gas temperature
to the initial injection temperature is varied, keeping the same injector
radii and axial velocity as in the base case.
For Survey 4, the mean flow chamber Mach number is 0.066, the

axial velocity is 200 m∕s, and the mixture ratio is the same as in the
base case. The number of injectors is varied from 10 to 19, keeping
the quantity NR2

o fixed, which fixes the total mass flux. Sketches of
four selected injector configurations are shown in Fig. 1. TheN � 10
injector configuration is the base case. Injectors are then added one by
one by first adding three injectors to the middle ring at �1∕2�R and
then adding six additional injectors to the outer ring at �3∕4�R. The
value ofRo is shown to decreasewith increasingN in order to control
the mass flux.
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In Surveys 1 and 4, the mean chamber-gas temperature naturally
remains fixed because themixture ratio is fixed. However, for Survey
2, the constant gas temperature is an artificial constraint; as the
mixture becomes more rich, the mean gas temperature should
decrease. The practical effect of the mixture ratio change appears

through both the injector radii ratio and the gas temperature ratio. For
example, as the mixture gets richer, the injector radii ratio increases
while gas temperature decreases. Thus, to get the practical effect of
themixture ratio variation, the variations in two parameters should be
coupled.

Fig. 1 Injector configurations. The number of injectorsN varies between 10 and 19. The outer radiusRo of the injector is adjusted to keep the total mass

flux constant.

Fig. 2 Variation of V3 and V4.
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A. Combustion Response Factor

It is necessary to calculate in sequence certain quantities before
obtaining results for the amplitude and phase as functions of the slow
timevariable. Here, wewill report the results in an ordermatching the
required sequence. For each of the different cases, the quantities V3

and V4 are calculated, which relate the energy release rate to a
pressure fluctuation, giving both the in-phase and out-of-phase

components, as shown by Eq. (73). The results are presented in Fig. 2
for all surveys. Both V3 and V4 are independent of Mach number, so
the values for the base case are constant, with V3 � 3.407 × 10−3

and V4 � 4.629 × 10−4.
The results in Fig. 2 show that the in-phase component of the

combustion response factor decreases asRo increases. Basically, this
the Strouhal number effect [27].Namely, themixing time increases as

Fig. 3 Variation of k1.
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the radius increases and the mismatch between the period of
oscillation and the mixing time increases. As Ro∕Ri increases, the
mixture becomes more fuel rich and thereby less energetic, causing a
decrease of the in-phase response factor. The increase in the inflow
temperature Ti0 causes a higher flame temperature and thereby a
greater value of the in-phase combustion response. Since V3 and V4

are representative of an individual injector stream, their values
decrease as the number of injectors are increased at constant total
mass flow; each injector has decreased mass flow and becomes less
energetic as more injectors are added.

B. Constants for Amplitude and Phase Dynamics

Once the values for V3 and V4 are known, the energy release
coefficients are readily determined after integration (i.e., connection)
with the injection configuration. The coefficients, k1 through k4 are
determined following Eq. (59). Also, k1 and k3 in the perturbation
solution need information about the combustion process through
Eq. (79), after multiplying by a factor containing the ratio of specific
heats of the mixture. The coefficient k1 depends on the balance
between the linear combustion driving mechanism and the linear
nozzle damping mechanism. The coefficient k2 is derived from the
nonlinear interaction of the nozzle with the wave dynamics and does
not depend on the coaxial flame model. The term k2A

3 is a nonlinear
correction to k1A in Eq. (60). A positive value of k2 means that the
nonlinear correction to nozzle damping reduces the damping from the

overprediction of the linear theory. The k4 value is determined from
the nonlinear wave dynamics alone without any effects from the
combustion or the nozzle. In particular, for our first tangential mode

Fig. 5 The effect on k1 of moving the injectors outward, comparing the

base case with a leaner mixture at a fixed temperature ratio.

Fig. 4 The effect on k1 of moving the injectors outward.
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with the value γ � 1.3, we have k2 � 2.2699M and k4 � 1.5318.
Thus, k2 depends only onM, while k4 is independent of the surveyed
parameters.
Special attention is given first to k1, which is critical for both linear

and nonlinear stability behavior. Thevariation of the coefficient k1 for
the overall study is given in Fig. 3. It follows closely the behavior
of V3.

Thevariation inMach number has themost significant effect on the
value of k1. For very small Mach numbers less than about 0.012, the
value for k1 is positive and increases exponentially as the Mach
number decreases toward zero. In this region, the model predicts
unconditional instability. As the Mach number increases, the
coefficient k1 approaches a constant value. For Survey 1, when the
Mach number, mixture ratio, and mass flux are fixed, an increase in

Fig. 6 Variation of k3.
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the injector radii causes k1 to decrease slightly. Again, this can be
described as a Strouhal number effect caused by the relation between
the jet mixing time and the oscillation period. For the specific values
considered here, k1 decreases by only about 3% across the entire
domain. For Survey 2, it is seen that less rich or near-stoichiometric
mixtures have a higher (i.e., less negative) value of k1 than fuel-rich
mixtures. For Survey 3, k1 decreases in an approximately linear
fashion as the temperature ratio Tss;∞∕Ti0 increases. For Survey 4, as

three injectors are added one by one at a radial position of �1∕2�R, the
value of k1 decreases; however, as additional injectors are added at
�3∕4�R, k1 increases. Nonetheless, the value of k1 only changes by
about 2% when the number of injectors is increased from 13 to 19.
As shown in Fig. 3, it is predicted that, for a given Mach number,

the value of k1 may be increased by moving injectors outward in
radial position, by changing the mixture ratio to produce a leaner
mixture, or by decreasing the temperature ratioTss;∞∕Ti0. Additional

Fig. 7 Variation of limit-cycle amplitude A�.
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cases are examined to gain a more representative picture of the
operating conditions in which k1 becomes positive, indicating
unconditional instability. Figure 4 shows the variation of k1 vs the
Mach number when the injectors are moved from the main
configuration described previously to a configuration inwhich all ten
injectors are located at a radial position of either �3∕4�R or �7∕8�R.
The pressure amplitude increases with the radial position, meaning
that the energy-release-rate oscillation, which increases with the
pressure amplitude, also increaseswith the radial position. Therefore,
more energy is added to the oscillation as the radial positions of the
injector and flame are increased, making the configuration more
unstable. Figure 4 also shows the effect on k1 for different mixture
ratios and temperature ratios when the injectors are moved outward.
Figure 5 compares the distribution of k1 vs the Mach number for two
different mixture ratios: the base case (Ro � 1.1 cm and
Ri � 0.898 cm) and the most fuel-lean case. By using a less rich
mixture and moving the injectors outward to �7∕8�R, the critical
Mach number indicting the onset of instability increases by nearly a
factor of 2.
The behavior of k3 shown in Fig. 6 follows closely the behavior of

V4 shown in Fig. 2. In particular, similar monotonic trends with the
temperature ratio are seen, and peak values occur asRo orRo∕Ri vary.
Interestingly, the behavior as more injectors are added is not quite
monotonic. The behavior with M is expected from the definition
of k3.

C. Amplitude: Transient Behavior and Triggering Threshold

The signs for k1 and k2 affect the stability of the system. For a
positive k2, there are two different scenarios predicted. For positive k2
and positive k1, the solution is unconditionally unstable, and the
amplitude A goes to infinity in a finite time. For positive k2 and
negative k1, a limit cycle exists, in which the solution will decay
below a certain critical amplitude and grow to infinity above the
critical amplitude. Of course, growth to an infinite amplitude should
not occur if higher-order terms were included in the perturbation
series. In a linear analysis, only k1 without k2 would appear; in the
framework of the linear world, positive (negative) k1 means that any
perturbation, no matter how small (large), would grow (decay).
The limit-cycle amplitude A� is determined from the values of k1

and k2 for the different cases. Since k2 is always positive, the limit-
cycle amplitude only exists for regions where k1 is negative. In that
case, the limit cycle is unstable and becomes the triggering threshold.
Thus, the larger (smaller) the value of A�, the more stable (unstable)
the configuration in nonlinear terms. The results are presented in
Fig. 7. The nondimensional limit-cycle amplitude varies most
significantly with the Mach number. The maximum limit-cycle
amplitude is reached near aMach number of 0.02. In the regionwhere
k1 < 0, the magnitudes of both k1 and k2 are monotonically

increasing functions of M. Since the slope of the k1 magnitude
decreases withM while the k2 slope is constant, the ratio produces a
maximum. For Survey 1, increasing the injector radii at a constant
mixture ratio increases that amplitude slightly. For Survey2, themore
fuel-rich mixtures have a modestly larger limit-cycle amplitude than
the lean mixtures. For Survey 3, the limit-cycle amplitude increases
slightly as the temperature ratio Tss;∞∕Ti0 increases. For Survey 4,
the amplitude increases as the three injectors are added one by one to
the middle ring but decreases as additional injectors are added to the
outer ring.
Figure 8 gives the solution for the amplitude as a function of the

slow time τ for the base case at a chamber-mean-flow Mach number
of 0.066. The unstable-limit-cycle amplitude A� � 1.356 has been
determined from the values of k1 and k2 at the corresponding Mach
number. For an initial amplitude greater than A�, the solution goes to
infinity in a finite time; for an initial amplitude less than A�, the
amplitude gradually decays to zero. This behavior is representative of
the scenarios in which k1 < 0 and k2 > 0. For very small Mach
numberswith positive k1, a limit cycle does not exist, and the solution
goes to infinity unconditionally, regardless of the initial amplitude.
Of course, it is not expected that the amplitude should ever grow to

infinity. In the case in which an unstable limit cycle exists, we expect
the existence of a stable limit cycle of greater amplitude. For the case
of linear instability (unconditional instability), we also expect a stable
limit cycle to occur. A higher-order expansion of our perturbation
series would introduce additional nonlinear damping and should
predict the stable limit cycle.
For the base case at amean-flowMach number of 0.066, results are

compared to those presented by Sirignano and Popov [11] for the
coupled coaxial-injector and combustion-chamber-wave-dynamics
models. For the ten-injector design configuration, imposing a first
tangential mode as the initial condition, Sirignano and Popov [11]
show the existence of nonlinear triggering corresponding to an
unstable limit cycle of approximately 20 atm. For initial amplitudes
below 20 atm, the oscillation decays. For initial amplitudes above 20
atm, the oscillation amplitude grows toward a stable limit cycle at 155
atm. Qualitatively, the present perturbation theory also predicts an
unstable limit cycle for the same operating conditions and injector
configuration. Higher-order perturbation analysis would be required
in order to predict the presence of a higher-amplitude stable limit
cycle. For the perturbation theory, the corresponding pressure
amplitude Δp (atm) for the unstable limit cycle is evaluated at the
chamber wall and is given by Δp � �����

M
p

A�J1�s11�pss. For the base
case at M � 0.066, the pressure oscillation amplitude is 40 atm,
twice the value calculated by Sirignano and Popov [11]. There are
several possible explanations for the differences. The CFD result
includes the effects of all harmonics in the waveform, while the
amplitude reported now for the perturbation calculation addresses
only the fundamental component. Second, the amplitude that is
reported here for the fundamental component of the first tangential
mode applies only to the contribution that appeared from the O�ε�
solution; that fundamental frequency behavior can also appear from
higher-order results as a homogeneous solution to the higher-order
separated partial differential equations.

D. Nonlinear Frequency Correction

The two coefficients k3 and k4 determine the transient change in
phase throughEq. (55) and ultimately determine the frequency for the
limit cycle. The results for the nonlinear frequency correction ω2 are
presented in Fig. 9. Except for the dependence on M, the variations
with parameters are modest.

VIII. Conclusions

A perturbation analysis for first-tangential-mode combustion
instability in a liquid-propellant rocket engine has been developed
through third order in the perturbation parameter using a two-time-
variable method that yields information not obtained by previous
perturbation expansions for combustion-chamber oscillations. The
method allows determinations of the transient growth or decay of
the oscillation, the threshold for the triggering of the instability in the

Fig. 8 Amplitude solution A�τ� for the base case.
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bistable domain, the variation of the phase with time, and the
nonlinear correction to the frequency. For the first time, the proper
perturbation parameter has been identified as the square root of the
mean-flow Mach number in the combustion chamber. Development
of the expansion to third order is necessary and sufficient to
obtain these results. To second and third orders, higher harmonics
with nonresonant frequencies are superimposed on the oscillation.

The amplitude and phase of the oscillation vary with the slow time
as described by a system of two first-order ordinary differential
equations. The amplitude variation with time has an exact solution,
and the particular amplitude of the unstable limit cycle (when
one exists) is predicted. Unconditionally unstable and conditionally
stable domains in the space of operational parameters are
predicted.

Fig. 9 Variation of frequency perturbation ω2.
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For the operating domain considered here, the stable limit cycle is
not predicted by the series truncated at third order. There is reason to
believe that a higher-order expansion would yield the stable limit
cycle for cases of unconditional instability (the linearly unstable
regime) and conditional stability (the nonlinearly unstable regime).
Furthermore, it should predict cases of unconditional stability.
Stability characteristics, e.g., growth and decay rates and

triggering threshold (i.e., unstable-limit-cycle amplitude), are
predicted as functions of the mean-flow Mach number; number,
size, and locations of injectors; mixture ratio; and steady-state to
initial-injection temperature ratio. As the mixture becomes more fuel
rich or as the propellant inflow temperature is reduced, the engine
becomesmore stable.Moving a higher fraction of the propellant flow
away from the chamber center has a destabilizing effect on the
tangential mode. The trend with the varying Mach number is not
monotonic; a most stable value ofM is deduced. The trends predicted
for changes in operational parameters are consistent with prior CFD
results. For example, the threshold for triggering is predicted within a
factor of 2. The proportionality of the amplitude parameter with the
square root of the mean-flow Mach number M for the tangential
oscillation contrasts with earlier results [2,10] for the longitudinal
mode that gives the amplitude parameter proportional to M. The
longitudinal-mode perturbation analysis with the shock formation

forces a balancing between damping and driving terms at second
order, while the tangential mode brings the balance at third order.
This explains why tangential oscillations are found to have much
higher amplitudes than the longitudinal waves.
This two-time-variable perturbation method is valuable for

predicting trends and qualitative behavior because it is less costly
than a CFD analysis. It also has value in identifying the critical
physics in the balance between those phenomena driving the
oscillation and those phenomena damping it. A simple system of two
first-order ordinary differential equations that provides a basis for
future active-control studies is produced.

Appendix: Definitions and Derivative Evaluations

The qn�r� and Qn�r� values are given in the following. Unless
noted otherwise, the arguments of the Bessel functions are s11r, and
nondimensional variables are used,

q0�r� ≡
1

γr2
��J22 − J21��2 − s211r

2� � s11rJ1J2�

Q0�r� ≡
1

γ
��J21 − J22��2 − s211r

2� − s11rJ1J2� (A1)

q1 ≡
γ − 1

γ

�
J1Q0

r2
� J1Q2

2r2
− s211J1F0 −

s211J1F2

2
� 3s211J

3
1

8γ
−
s211J

3
1

4

�
−

2

s11

��
J1
r
− s11J2

�
d2G2

dr2
�

�
s211�J3 − J1� −

4s11J2
r

� 2J1
r2

�
dG2

dr

�
�
3s11J2
r2

−
s211
r
�3J1 � J3� � s311J2

�
G2

�
� 1

s11r

�
s11J2G2

r
−
J1
r

dG2

dr
� s211J1H2 −

�
2
J1
r
− s11J2

�
dH2

dr
−
J1H2

r2

�

� γ − 1

γ2s11r

�
2s11J1�J22 − J21�

r
− 2

�
J1
r

�
2

J2 �
s211
2

J21J2 �
s311r

2
J1�J21 − J22� −

1
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�
J1
r

�
3

� 3

2s11
J2

�
J1
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�
2
�

� 1

2γ2s11r

�
2s11J2

�
J1
r

�
2

−
11s211
2

J31
r
� 2s211J

2
2

J1
r
−
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2

J32 � 6s311J
2
1J2 � s411rJ

3
1 −

7s411r

2
J1J

2
2

�
(A2)

q1s ≡
γ − 1

γ

�
J1Q2s

2r2
� 3s211J1F2s

2

�
� 1

γs211

��
J1
r
− s11J2

�
d3F2s

dr3
�

�
s211�J3 − J1� −

4s11J2
r

� 2J1
r2

�
d2F2s

dr2

�
�
3s11J2
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−
s211
r
�3J1 � J3� � s311J2

�
dF2s

dr

�
� 1

s11r

�
J1
r
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dr
−
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r
� s211J1H2s −

�
2J1
r

− s11J2

�
dH2s

dr
−
J1H2s

r2

�
(A3)

q2�r� ≡ −s211J21 �
s211
γ
J22 −

s11J1J2
γr

;

Q2�r� ≡ s211r
2J21 −

s211r
2

γ
J22 �

s11rJ1J2
γ

(A4)

q2s�r� ≡ Bs11

�
2F2 �

γ − 1

4γ
J21

�
;

Q2s�r� ≡ −Bs11r2
�
2F2�r� �

γ − 1

4γ
J21

�
(A5)
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q3 ≡
γ − 1
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(A6)

It is convenient to use the relations

dF2

dr
� 4πs211

��
Y2�2s11r�

r
− s11Y3�2s11r�

� Z
r

0

J2�2s11r 0�Q2�r 0�
r 0
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�
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r 0
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r 0
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−
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