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The avoidance of acoustic instabilities, which may cause catastrophic failure, is demanded for liquid-propellant

rocket engines. This occurs when the energy released by combustion amplifies acoustic disturbances; it is therefore

essential to avoid such positive feedback. Although the energy addition mechanism operates in the combustion

chamber, the propellant injector system may also have considerable influence on the stability characteristics of the

overall system, with pressure disturbances in the combustion chamber propagating back and forth in the propellant

injector channels. The introduced time delaymay affect stability, depending on the ratio of thewave propagation time

through the injector to the period of the combustion chambers acousticmodes. This study focuses on transverse-wave

liquid-propellant rocket engine instabilities using a two-dimensional polar coordinate solver (with averaging in the

axial direction) coupled to one-dimensional solutions in each of the coaxial oxygen–methane injectors. A blockage in

one (or more) of the injectors is analyzed as a stochastic event that may cause an instability. A properly designed

temporary blockage of one or more injectors can also be used for control of an oscillation introduced by any physical

event. The stochastic and design variables parameter space is explored with the polynomial chaos expansionmethod.

Nomenclature

Achem = chemical rate constant, m3∕�s · kg�
Aentrance = cross-sectional area of nozzle entrance, m2

Athroat = cross-sectional area of nozzle throat, m2

A, B = constants, defined in Eq. (2)
a = speed of sound, m∕s
a, b = chemical rate constants
cp = specific heat at constant pressure, J∕K · kg
cv = specific heat at constant volume, J∕K · kg
D = mass diffusivity, m2∕s
E = energy release rate, J∕kg · s
j = index for Cartesian coordinates
L = chamber length, m
L�·� = general differential operator
p = pressure, newton m−2

Q�d�l = Smolyak quadrature of lth order in d dimensions
R = chamber radius, m
Rs = mixture specific gas constant, J∕kg · K
Ri = inner radius of coaxial jet, m
Ro = outer radius of coaxial jet, m
Ru = universal gas constant, J∕kg · mole∕K
r = radial position, m
s = specific entropy, J∕K · kg
T = temperature, K
t = time, s
U = coaxial jet velocity, m∕s
ur = radial velocity component, m∕s
uθ = tangential velocity component, m∕s
Yi = mass fraction of species i
α, β = Schvab–Zel’dovich variables
γ = ratio of specific heats
ϵ = activation energy, J∕kg · mole
η = local radial coordinate for the injector grids

θ = azimuthal position
ν = kinematic viscosity, m2∕s
νT = turbulent kinematic viscosity, m2∕s
ξ = sample space coordinate of random variables
ρ = density, kg · m−3

τF = first tangential mode period, s
Ψ�·� = Legendre polynomials
ωi = reaction rate of species i, s−1

0 = undisturbed state
h· j ·i = inner product

Subscripts

F = fuel
i = index for chemical species
j = index for Cartesian coordinates
m = properties in the intake manifold
O = oxidizer
0 = undisturbed state

I. Introduction

W E ADDRESS the problem of liquid-propellant rocket engine
(LPRE) combustion instability, which is a well-known

phenomenon in rocket operation. The high-energy release by com-
bustion can, in certain conditions, reinforce acoustic oscillations,
causing them to grow to destructive amplitudes. LPRE combustion
instability provides a very interesting nonlinear dynamics problem,
as shown by both theory and experiment [1–3].

The combustion chamber, like any partially confined volume filled
with gas, has an infinite number of natural acoustic resonant modes.
In some operational domains, linear theory can predict that any small
disturbance in the noise range can grow to a finite-amplitude limit-
cycle acoustic oscillation driven by the combustion process. In
another type of operational domain, any disturbance, whether in the
noise range or substantially larger, will decay in time; the only limit
cycle is the steady-state equilibrium. A third type of operational
domain is one where both an unstable and a stable limit-cycle
oscillation exist. That is, noise and larger disturbances up to some
threshold level will decay with time. However, above that threshold
level, disturbances will develop in time toward the stable limit-cycle
oscillation, which has an amplitude higher than the threshold level
given by the unstable limit cycle. Our attention herewill focus on this
bistable operating domain of the engine where the triggering is
possible and both an unstable limit-cycle and a greater-amplitude
stable limit cycle exist. Neighboring operating domains with
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different design parameters (e.g., mean pressure, mass flow, and
mixture ratio) can be unconditionally stable (i.e., with no limit-cycle
oscillation) or unconditionally unstable (i.e., with a stable limit-cycle
oscillation). This is shown in Fig. 1, which shows calculation results
based on analyses given by Sirignano and Popov [3] and Popov et al
[4]. It provides a stability diagram for a range of the injector velocity
and reactant mixture fraction parameter variables. The top left graph
shows values of the stable and unstable first tangential mode limit
cycles as a function of the injector velocity. The top right graph shows
values of the stable and unstable first tangential mode limit cycles as a
function of the inner injector radius, for a fixed outer injector radius
(stoichiometric proportions are achieved for an inner injector radius
of 0.898 cm). The bottom graph shows a plot of stability regime types
as a function of both mixture fraction and injector velocity. For a
reduced injector velocity and very rich or very lean reactant mixtures,
the overall system is unconditionally stable; and for an increased
injector velocity at a stoichiometric mixture fraction, the overall
system is unconditionally unstable.
The design parameters remain constant with time; consequently,

drift will not occur from one domain to another during engine
operation.
There are two general types of acoustical combustion instability:

“driven” instability and “self-excited” instability, as noted by Culick
[5], who describes evidence in some solid-propellant rockets of the
driven type where noise or vortex shedding causes kinematic waves
(i.e., waves carried with the moving gas) of vorticity or entropy to
travel to some point where an acoustical reflection occurs. The
reflected wave causes more noise or vortex shedding after traveling
back, and a cyclic character results. These driven types do not rely on
acoustical chamber resonance and are much smaller in amplitude,
since the energy level is limited by the driving energy. The frequency
of oscillation for cases where vortex shedding is a factor depends on
two velocities: the sound speed and the subsonic, kinematic speed
of the vortex. Consequently, the frequency is lower than a purely
acoustic resonant frequency. Oscillations of this type are found in the
longitudinal mode. To the best of our knowledge, these have never
been observed in LPRE operation or in any transverse-mode insta-

bility and, when occurring in solid rockets or ramjets, the amplitudes
aremuch lower than the values of concern for LPRE. So, theywill not
be addressed in this research.
Interest in propellant combinations of hydrocarbon fuel and

oxygen, stored as liquids, is returning in the LPRE field. The
analysis and results here will address situations where the methane
and oxygen propellants are injected coaxially as gasses. These
propellants will have elevated temperatures at the injectors because
they have been used before injection, either for partial combustion for
gas generation to drive a turbo pump or as a coolant. In particular,
the inlet temperature and the mean combustion-chamber pressure
were carefully chosen to place the mixture in the supercritical (i.e.,
compressible fluid) domain. Therefore, realism is maintained here
when the chamber flow is treated as gaseous.
The dynamic coupling of the injector system with the combustion

chamber of a liquid-propellant rocket engine has been a topic of
interest for many decades. Two types of instabilities are known to
occur. The chugging instability mode has nearly uniform but time-
varying pressure in the combustion chamber. The combustion cham-
ber acts as an accumulator or capacitor, whereas the inflowing
propellant mass flux oscillates because the oscillating chamber
pressure causes a flux-controlling oscillatory pressure drop across
the injector. This low-frequency instability was characterized
by Summerfield [6]. The second type of coupling involves a high-
frequency oscillation at a near-resonant chamber mode frequency.
Here, the resonant frequency has beenmodestly adjusted because the
acoustic system involves some portion of the internal volume of the
injector as well as the combustion chamber and convergent nozzle
volumes.Crocco andCheng [7] discussed both types of instability for
one-dimensional (longitudinal) oscillations. Interesting discussions
of coupled injector-system acoustics by Nestlerode, Fenwick, and
Sack and by Harrje and Reardon can be found in pages 106–126 of
the well-known NASA SP-194 [1]. More recent overviews and
analyses are provided by Hutt and Rocker [8] and DeBenedictus and
Ordonneau [9]. Yang et al. [10] provided several interesting papers on
the design and modeling of rocket injector systems. Our work will
focus on the high-frequency coupling of the transverse chamber
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Fig. 1 System stability as a function of injector velocity and inner radius (mixture ratio).
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oscillations with the injector but will differ from previous works in
twoways. These previousworksmostly used linear analysis, whereas
we shall address the nonlinear dynamics. Furthermore, the analysis
here will consider disruptions of the injector flow, both as potential
triggers of nonlinear instability and as potential mechanisms for
arresting a developing instability.
The disturbances that trigger combustion instability can result

from fluid-mechanical disruptions in the propellant injection process,
shedding in the combustion chamber of large rogue vortices that
eventually flow through the choked nozzle [11], extraordinary excur-
sions in local burning rates, or a synergism among such events. In the
presentwork,wewill consider the first of the aforementioned types of
disturbances, namely, disturbances due to blockage in one or more of
the injector ports. Such blockages are characterized by their mag-
nitude, location, duration, and delay between each other. Typically,
the rocket engineer does not know these characteristics a priori;
therefore, these parameters bear uncertainty and may be described as
stochastic variables. Thus, this nonlinear dynamics problem may
properly be viewed as stochastic. In particular, the magnitude and
duration of a blockage and, for the involvement ofmore than one port,
the time delay between injector blockages are viewed as random
variables.
To obtain an accurate solution to this stochastic problem in an

efficient computational manner, we employ a polynomial chaos
expansion (PCE) [12,13] that expresses the solution as a truncated
series of polynomials in the random variables (RVs) characterizing
injector blockage. The use of PCEs in terms of Hermite polynomials
of Gaussian RVs was introduced by Wiener [14], and their con-
vergence properties were studied by Cameron and Martin [15].
Nonlinear oscillations present a challenging application for PCE
methods, as they have difficulty with approximating the long-term
solution of dynamical equations; indeed, convergence of the PCE is
not uniform with respect to the time variable. As it will be discussed
later in detail, it is possible to capture the triggering of unstable
oscillations with a modest number of terms in the PCE and do so at a
computational cost considerably smaller than a more traditional
Monte Carlo approach. Unlike the authors’ previous work [4], which
uses PCE exclusively for spanning the parameter space of random
injector channel blockages, the present research also uses the PCE
methodology to explore the parameter space of a single design
variable, namely, the length of the injector channel, which has
significant influence on the stability characteristics of the overall
system.
In recent previous papers [3,4], a more detailed background and

literature review was presented for combustion instability research
and stochastic analysis. Consequently, a less detailed review is
provided here.
In this paper, an analysis is presented of nonlinear transverse-mode

combustion instability in a circular LPRE combustion chamber with
acoustic coupling to a quasi-steady exit flow through many short,
convergent, choked nozzles distributed over the exit cross section. In
this way, it is similar to previous analyses [3,4]. Although the nozzle
configuration deviates from practical designs, it has a long history of
use in experiments and theory on account of its convenience [1,7]. A
new aspect involves the nonlinear acoustic couplings with flows
in the propellant injectors upstream of the chamber. In addition,
triggering is examined through a stochastic analysis following our
previous approach [4]. In practice, propellant flow through the in-
jector can be in the same liquid phase as the stored propellant: in a
gaseous form mixed with combustion products because of upstream
flow through a preburner used for a propellant turbopump, or
in gaseous form because the liquid propellant was used as a
combustion-chamber-wall coolant upstream. We consider here
gaseous coaxial flow of the pure propellants methane and oxygen,
based on the last scenario.
The remainder of this paper is organized as follows: the governing

equations for the wave dynamics and the jet mixing and reaction are
introduced in Sec. II. The polynomial chaos expansion approx-
imation to the stochastic solution is also described in Sec. II.
Section III provides the details of the numerical solution and analytic
expressions for the stochastic disturbances to the flow that possibly

can trigger the large-amplitude transverse acoustic oscillation.
Results are presented in Sec. IV.

II. Governing Equations

A. Deterministic Analysis

The present analysis focuses on pure tangential modes of
oscillation without significant longitudinal effects. We neglect the
viscous and diffusion terms in the development of thewave equation,
as these processes act onmuch smaller length scales than those of the
acoustic waves in the combustion chamber. The wave equation for
pressure is averaged in the axial x direction to yield the following
two-dimensional evolution equation for the longitudinal average of
pressure [3]:

∂2p
∂t2
� Ap�γ−1�∕2γ ∂p

∂t
− Bp�γ−1�∕γ

�
∂2p
∂r2
� 1

r

∂p
∂r
� 1

r2
∂2p
∂θ2

�

� �γ − 1�
γ

1

p

�
∂p
∂t

�
2

� �γ − 1� ∂E
∂t

� γp�γ−1�∕γ
�
∂2�p1∕γu2r�

∂r2
� 2

r

∂�p1∕γu2r�
∂r

� 2

r

∂2�p1∕γuruθ�
∂r∂θ

� 2

r2
∂�p1∕γuruθ�

∂θ

� 1

r2
∂2�p1∕γu2θ�

∂θ2
−
1

r

∂�p1∕γu2θ�
∂r

�
(1)

where r and θ are the radial and azimuthal coordinates, respectively;
p denotes pressure; u denotes velocity; and γ is the specific heat ratio.
E is the energy release rate, and A and B are constants dependent on
the steady-state temperature and pressure, and the ratio between the
throat and entrance areas of the nozzle:

B � a20

p
�γ−1�∕γ
0

A � KB
L

K � γ � 1

2γ

Athroat

Aentrance

�
γ

R

�
1∕2�γ � 1

2

�−��γ�1�∕2�γ−1�� p�γ−1�∕2γ0

T
1∕2
0

(2)

with p0, T0, and a0 denoting, respectively, the pressure, temperature,
and speed of sound of the undisturbed chamber; and Athroat and
Aentrance are, respectively, the throat and entrance areas of the nozzle.
Neglecting viscous dissipation and turbulence–acoustic inter-

actions, the two momentum equations are averaged in the axial
direction to yield [3]

∂ur
∂t
� ur

∂ur
∂r
� uθ

1

r

∂ur
∂θ

−
u2θ
r
� C

p1∕γ
∂p
∂r
� 0

∂uθ
∂t
� ur

∂uθ
∂r
� uθ

1

r

∂uθ
∂θ
� uruθ

r
� C

rp1∕γ
∂p
∂θ
� 0 (3)

with C � p1∕γ
0 ∕ρ0.

It is desirable to use a physically reasonable but simple description
of the wave dynamics for the gaseous flow in each of the several
coaxial injectors. More elaborate studies of individual injectors are
given in [16–20]. In the injector feed pipes, variations in the
tangential direction are neglected; pressure and velocity evolve via
the equations

∂2p
∂t2

− a2
∂2p
∂x2
� a2 ∂

2�ρu2�
∂x2

−
∂a2

∂t
∂�ρu�
∂x

(4)

∂u
∂t
� u ∂u

∂x
� −

1

ρ

∂p
∂x

(5)
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which are solved on 10 separate one-dimensional grids, one for each
separate injector channel. To ensure a sufficient pressure drop from
the intake manifold to the injector channels so that pressure fluc-
tuations in the channels do not cause reverse flow, each injector pipe
is modeled as being connected to the intake manifold via an orifice of
area AO smaller than the area AI of the injector itself. Denoting the
intakemanifold pressure and sound speed aspm andam, respectively;
andwith the convention that the injector channels each have lengthLI
and span the interval [−LI , 0] in the x direction, the velocity at the
orifice exit, assuming isentropic flow, is equal to

uorifice � cD × am

�����������
2

γ − 1

s �����������������������������������������������
1 −

�
p�−LI; t�
pm

��γ−1�∕γs
(6)

where CD ∈ �0; 1� is a discharge coefficient accounting for flow
friction and separation. By conservation ofmass, themeanvelocity at
the intake manifold end of the injector channel is equal to

u�−LI; t� � cD
AO
AI
am

�����������
2

γ − 1

s �����������������������������������������������
1 −

�
p�−LI; t�
pm

��γ−1�∕γs
(7)

To obtain the energy release rate E, we introduce the Shvab–
Zel’dovich variableα � YF − νYO, whereYF andYO are the fuel and
oxidizer mass fractions, respectively, with ν being the fuel-to-oxygen
mass stoichiometric ratio. The variable

β � �Q∕�cpTo��YF − T∕To � �p∕po��γ−1�∕γ

is introduced. The variables α, β, and YF evolve by the following set
of scalar transport equations:

∂α
∂t
� ux

∂α
∂x
� uη

∂α
∂η

−D
�
∂2α
∂η2
� 1

η

∂α
∂η
� ∂2α

∂x2

�
� 0 (8)

∂β
∂t
� ux

∂β
∂x
� uη

∂β
∂η

−D
�
∂2β
∂η2
� 1

η

∂β
∂η
� ∂2β

∂x2

�
� 0 (9)

and

∂YF
∂t
� ux

∂YF
∂x
� uη

∂YF
∂η

−D
�
∂2YF
∂η2
� 1

η

∂YF
∂η
� ∂2YF

∂x2

�
� ωF

(10)

In the preceding equation, x and η are, respectively, the axial and
radial coordinates of one of several axisymmetric cylindrical grids
coaxial with each injector, and the source term on the right-hand side
of Eq. (10), following a one-step irreversible Arrhenius chemical
mechanism, has the form

ωF � AchemρYOYFe
−ϵ∕RuT

� Achempo
νRsTo

p

po

YF�YF − α�
�Q∕cpTo�YF − β� �p∕po��γ−1�∕γ

× exp

�
ϵ∕RuTo

�Q∕cpTo�YF − β� �p∕po��γ−1�∕γ
�

(11)

where Achem is the chemical rate constant; ϵ is the activation energy;
andRs andRu are, respectively, themixture specific and universal gas
constants. The present source term formulation has been compared
with the classic Westbrook and Dryer one-step mechanism [21,22],
which uses nonunitary exponents for the preexponential factors YO,
YF, and no significant difference was observed for the present case.
The axial and radial velocities in Eqs. (8–10) are obtained from a

solution of the variable-density Reynolds-averaged Navier–Stokes
equations

ρ

�
∂ux
∂t
� ux

∂ux
∂x
� uη

∂ux
∂η

�
� −

∂pl
∂x
� ρνT

�
∂2ux
∂x2
� 1

η

∂
∂η

�
η
∂ux
∂η

��
(12)

ρ

�
∂uη
∂t
� ux

∂uη
∂x
� uη

∂uη
∂η

�
� −

∂pl
∂η

� ρνT

�
∂2uη
∂x2
� 1

η

∂
∂η

�
η
∂uη
∂η

�
−
uη
η2

�
(13)

which are solved on each injector grid, where pl�x; η; t� is a local
hydrodynamic pressure for which the mean is by definition 0 and
which has considerably lower magnitude than the injector pressure
p�t� obtained from Eq. (1). The density in Eqs. (12) and (13) is
obtained from the species scalars and the long-wavelength pressure
p�t� at the injector’s location, so that the overall procedure for solving
Eqs. (12) and (13) is elliptic.
The turbulent viscosity νT and diffusivityD are evaluated based on

the turbulent viscosity approximation for a self-similar jet [23] with a
turbulent Prandtl number of 0.7, yielding

νT �
U�t�Ro
35

(14)

D � U�t�Ro
24.5

(15)

where U�t� is the magnitude of the vector formed by the jet exit
velocity and the local transverse-wave-induced velocity.

B. Galerkin Approximation of a Stochastic Partial Differential
Equation System with Uncertainty in the Initial Conditions

We use the polynomial chaos expansion method, previously
applied by the authors in [4] to a similar problem dealing only with
the combustion-chamber wave dynamics. Let the perturbation from
steady-state operating conditions be uniquely determined by a vector,
ξ, of independent random variables or geometrical parameters, such
as the length of the injector pipe.
Then, the solution of the system of partial differential equations

(PDEs) from the previous subsection, consisting of the fieldsp, ui, α,
β, and YF may be expressed as a set of fields, in the forms �p; ui� �
n�r; θ; t; ξ� and �α�j�; β�j�; Y�j�F � � m�x; η; t; ξ�, with the superscript
�j� denoting each of the 10 injectors, and so the systemof Eqs. (1) and
(3) forms two multivariate PDE systems [4]:

L1�n; r; θ; t; ξ� � f1�r; θ; t;m; ξ� (16)

L2�m; x; η; t; ξ� � f2�x; η; t;n; ξ� (17)

where Eq. (16) governs the evolution of p, ur, and uθ on a two-
dimensional r − θ grid. Equation (17) governs the evolution of 10
sets (one for each injector) of the fields α, β, and YF on two-
dimensional x − η grids, coaxial with the injector axes. L1 and L2

are the differential operators representing Eqs. (1) and (3) and
Eqs. (8–10) respectively, and f1, f2 are source terms. Note that
Eqs. (16) and (17) are coupled via the dependence on m of f1, the
source term in the evolution equation of n (due to the pressure being
dependent on the energy release) and, conversely, via the dependence
on n of f2 (due to the YF source term being dependent on pressure).
We shall employ the stochastic Galerkin methodology to
approximate the solution of Eq. (16). For an in-depth introduction
to the stochastic Galerkin technique, the reader is referred to [12,13].
A truncated polynomial chaos expansion consists of the

approximations
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n�r; θ; t; ξ� ≈
XP
k�0
nk�r; θ; t�Ψk�ξ�

m�x; η; t; ξ� ≈
XP
k�0
mk�x; η; t�Ψk�ξ� (18)

whereΨk�ξ� areP� 1Legendre polynomials in the random vector ξ.
In particular, for the present case that uses uniform random variables,
Ψk�ξ� are all possible n-dimensional products, of a degree up to l for
the lth-order PCE expansion, in the Legendre polynomials of the
component scalars of ξ. For a fixed simulation end time TF and
additional smoothness assumptions, this representation of the sample
space implies exponential [13] convergencewith respect to the order,
l, of the PCE expansion. The number of polynomials,P� 1, is equal
to �n� l�!∕�n!l!�. For the low-dimensional sample space used in this
study, the PCE methodology has substantially better computational
efficiency than a more standard Monte Carlo procedure [4].
Substituting the approximation of Eq. (18) into Eqs. (16) and (17),

and taking the inner product denoted by h· j ·i over the range of ξwith
each of the polynomials Ψk�ξ�, yields

�
L1

�
r; θ; t; ξ;

XP
k�0
nk�r; θ; t�Ψk�ξ�

�
jΨi�ξ�

�

� hf1�r; θ; t;m; ξ�jΨi�ξ�i (19)

�
L2

�
x; η; t; ξ;

XP
k�0
mk�x; η; t�Ψk�ξ�

�
jΨi�ξ�

�

� hf2�x; η; t;n; ξ�jΨi�ξ�i (20)

which are two systems ofP� 1 deterministic equations, each similar
to the system of equations [Eqs. (1–10)], which can be solved
numerically for each of the P� 1 coefficients nk�r; θ; t� and
mk�x; η; t� using the same discretization schemes used for the
approximation of a deterministic solution to Eqs. (1–10).
A sparse grid based on Smolyak’s quadrature rule is used to deal

with the integration of the nonlinear terms when evaluating the inner
products of Eqs. (19) and (20). In particular, we use Q�1�i f to denote
the ith order of a univariate nested quadrature rule [24], i.e.,

Q�1�i f �
X
j

qi;jf�xi;j� (21)

where qi;j and xi;j are, respectively, the weights and nodes of the ith-
order univariate quadrature, with Q�1�0 f being identically zero.
We use Q�d1� ×Q�d2�g to denote the product of the multivariate

quadratures Q�d1� and Q�d2�: the first of which integrates on the first
d1 arguments, and the second Qd2 of which integrates on the last d2
arguments of a multivariate function g. Then, the d-dimensional, lth
order of the sparse Smolyak quadrature, denoted Q�d�l f, is defined
recursively as

Q�d�l f �
Xl
i�1
�Q�1�i −Q�1�i−1� ×Q

�d−1�
l−i�1f (22)

With thismultidimensional quadrature, we can approximate the inner
product of, for example, the source term ωF by expressing it as a
function ofm�ξ� and n�ξ�, which are obtained from the polynomial
expansion [Eq. (18)]. This gives us ωF�ξ�, and the inner product
hωF�ξ�jΨk�ξ�i is approximated by

hωF�ξ�jΨk�ξ�i ≈Q�d�l �ωF�ξ�Ψk�ξ�� (23)

where the lth-order quadrature Q�d�l is used to integrate on the d-
dimensional sample space variable ξ.

The use of the Smolyak quadrature yields, for smooth functions f,
exponential convergence of the numerical error with respect to the
order l of the quadratureQ�d�l f. Further, since it is based on only those
points of the d-dimensional product of the univariate quadratures

Q�1�l which yield product quadratures of order l or less (whereas a
standard d-dimensional product of the univariate quadratures yields

product quadratures of order ld), the Smolyak quadrature Q�d�l f
involves evaluation on considerably fewer points than a simple
product of univariate quadratures. To match the accuracy of the
Smolyak quadrature to that of the PCE, we use the same order for
both; for the seventh-order four-dimensional case considered next, a
simple product of the seventh-order 15-point nested univariate
quadratures would require 154 � 50; 625 points, whereas the
Smolyak quadrature yielded by Eq. (22) requires only 641 points.

III. Simulation

Combustion instability was studied over a range of operating
conditions for a 10-injector design by [3]. With varying mixture
ratio or mass flow, three zones of stability type were found: stable
operation under any perturbation; linearly (spontaneously) unstable
with infinitesimal perturbation (noise) resulting in nonlinear limit-
cycle oscillation; and an operating zonewhere triggering occurs with
a disturbance above a threshold magnitude, leading to a nonlinear
limit-cycle oscillation, while a perturbation below the threshold
decays. Here, our stochastic analysis will focus on this last operating
regime where triggering action is possible.
The present simulation uses a cylindrical chamber of axial length

L � 0.5 m and radius R � 0.14 m, with 10 injectors: one at the
center of the chamber; three at r � R∕2, spaced apart at even angles
of 2π∕3; and six at r � 3R∕4, evenly spaced apart at angles of π∕3.
Each injector consists of two concentric pipes, as shown in Fig. 2: the
inner of which, with a radius of 0.898 cm, serves as the oxidizer inlet;
and the outer, with a radius of 1.1 cm, serves as the fuel inlet, leading
to fuel and oxidizer inflow in stoichiometric proportions. The injector
configuration is shown on the left-hand side of Fig. 3.
The fuel and oxidizer in the present simulation are, respectively,

gaseous-phase methane and oxygen, entering the combustion cham-
ber at 400 K with an axial velocity (at standard operating conditions)
of 200 m∕s. Using a value of 0.115 for the ratio between the nozzle
throat area and the combustion-chamber cross-sectional area results
in a steady-state operational pressure of 200 atm and a steady-state
temperature of 2000 K.
The evolution equations for pressure and velocity [Eqs. (1) and (3)]

are solved via a second-order finite difference procedure on a uniform
polar grid, with the radial and azimuthal components of velocity
staggered with respect to pressure. The evolution equations for the
scalars α, β, and YF are solved on 10 disjoint two-dimensional
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Fig. 2 Injector geometry: intake manifold (x < −0.15 m), injector
channels (−0.15 m ≤ x ≤ 0), and chamber (x > 0).
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cylindrical grids (neglecting field variations in the azimuthal var-
iable): each coaxial with the axis of the respective injector. For more
details on the solution procedure for the deterministic system, the
reader is referred to [3].
The evolution equations for pressure and velocity in the injector

channels [Eqs. (4–7)] are solved on 10 separate one-dimensional
grids for each injector channel (see Fig. 3). These solutions depend on
the tangential pressure and velocity solutions of Eqs. (1) and (3) for
determination of the pressure value at the end of the injector channel
and provide the injector outlet velocities for the evolution equations
for the scalars α, β, and YF.
In this study, we explore perturbations from standard operating

conditions due to blockages in the flow from the intake manifold to
the injector channels. Upstream of the injector channels, there exist
turbopumps and flow turns. These features can produce cavitation or
shed vortices. Those disturbances can advect downstream and cause
blockages entering the injector, which are modeled simply by abrupt
changes in the discharge coefficient of Eq. (7) applied at the upstream
end of the injector channel. Specifically, we use an area ratio of
AO∕AI � 0.5 between the intake manifold orifice and the injector
channel’s cross section. An unobstructed flow ismodeled byCD � 1
for the discharge coefficient, and blockages are modeled as tem-
porary decreases of the discharge coefficient to a certain minimal
value. Specifically, a blockage of duration τB and peak mass flow
reduction of k ∈ �0; 1� correspond to a decrease in the discharge
coefficient as a function of time according to the formula

cD � 1 − k sin �πt∕τB�2 (24)

We note that such a temporary reduction of the discharge coefficient
causes a decrease and subsequent increase in the propellant flow rate
for the corresponding injector, leading to a full sinusoidal cycle in the
rate of change of energy release, ∂E∂t , which appears as a source term in
Eq. (1). Thus, a blockage of period τ is expected to excite the
combustion chamber’s acoustic modes of similar period. To test the
possibility for excitation of higher tangential mode instabilities,
deterministic simulations with a square pulse in the discharge
coefficient were also performed. Such a pulse contains higher-

frequency components, which specifically excite a second tangential
mode of considerable amplitude in the transient to the limit cycle.
This component, however, decays by the time the limit cycle is
achieved so that, for pulses with higher-frequency components, the
limit cycle (if one is achieved and the oscillation does not decay to
the standard operating conditions) is still dominated by the first
tangential acoustic mode of this chamber for the chosen design
parameters.
In addition to injector blockages as a source for triggered

instability, we explore their use as a mechanism for the reduction of a
growing instability. Specifically, we apply a controlled blockage after
a moderate interval of time (accounting for the delay inherent in
detection of an instability and response to it) has elapsed since the
triggering event.

IV. Results

In this section, we explore the types of blockages that lead to the
development of instabilities and their subsequent suppression. First,
we present PCE simulations exploring a parameter space of possible
injector disturbances that lead to instability. Then, we present results
from simulations in which subsequent blockages, intentionally
generated as part of a control mechanism, yield a return of the
growing instability to the standard operating conditions.

A. Conditions Leading to the Development of a Limit Cycle

Here, we explore instabilities caused by a blockage in two adjacent
injector channels, namely, injectors 9 and 10, as identified in Fig. 3, in
the outer injector ring. We use the PCE methodology to obtain
solutions for a four-dimensional random variable ξ � �ξ1; ξ2; ξ3; ξ4�.
The components ξ1; : : : ; ξ4 are independent and uniformly
distributed on the interval [0,1]; they determine the blockage
duration and magnitude as defined in Eq. (24), the delay between the
blockages of injectors 9 and 10, as well as the design parameter of the
injector length. Specifically, we have that ξ1 � k and τB �
�0.5� ξ2�τF, where k and τB are, respectively, the blockage mag-
nitudes and duration, as defined in Eq. (24); the delay between the
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two blockages is equal to ξ3 × 2.5τF, and the injector length is equal
to 0.11 m� 0.055 m × ξ4.
Figure 4 plots the marginal probability of growth as a function of

the duration of the injector blockage. It can be seen that this pro-
bability is highest when τB is close to τF, the period of the first
tangential mode, with a probability of 0.67 at τB � τF. This is to be
expected, since an injector blockage influences the pressure evo-
lution equation via the dE

dt source term in Eq. (1): this term is negative
during the first half of the blockage, which causes a reduction of the
oxygen mass flow rate, and hence a reduction of the heat release.
During the second part of the blockage, the mass flow rate and heat
release return to their original values, yielding a positive dE

dt . There-
fore, a blockage of duration τB causes a perturbation of sinusoidal
nature and the same period, in the source term dE

dt . This situation is
most likely to excite an instability when τB matches the period of
the most unstable mode for this chamber, namely, the first tan-
gential mode.
Figure 5 presentsmarginal probability as a function of themaximal

decrease of the oxygen flow rate. As can be expected, the probability
increases for a stronger blockage, with a probability of 0.68 observed
for a blockage duringwhich themass flow rate in the injector drops to
zero. Note that, even for infinitesimal blockages (that is, maximal
decrease close to 0), the probability of growth is positive: approx-
imately 0.05. This, combined with the results of Fig. 6, implies that,
for certain injector channel lengths, the overall system of the
combustion chamber and injector is linearly unstable.

Probabilities of growth vs injector channel length are shown in
Fig. 6. The length ranges from 0.11 m, for which the period of the
pipe’s first longitudinal mode matches τF, to 0.165 m, for which the
first longitudinal mode’s period is equal to 3∕2τF. As can be
expected, the system is less stable in the former case, which features a
resonance between the injector feed and chamber acoustics. As
previously mentioned, the probability of growth equals one for a pipe
length of 0.11m, suggesting that the systemmay be linearly unstable
for that configuration. This result is supported by deterministic
simulations performed for this injector length, which result in the
development of an instability regardless of the magnitude of the
injector blockage.
In addition to the probability of growth to the limit cycle, the length

of the injector also influences the limit-cycle magnitude. This can be
seen in Fig. 7, which plots limit-cycle magnitude vs injector length.
There is a monotonic decrease of the limit-cycle amplitude, from
167 atm for themost unstable configurationwith an injector length of
0.11 mm to 142 atm for an injector of length 0.165 m.
We also examine the influence of the time delay between the

two blockages on the probability of growth. Figure 8 shows, for set
injector lengths of 0.13 and 0.15 m, the probability of growth as a
function of the time delay between the first and second blockages. It
can be seen that the probability is decreased for time delays that are an
odd multiple of τF∕2, and this decrease diminishes with increasing
time delay. This is consistent with the deterministic results of the
previous sections, in which a single antipulse was not sufficient to
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Fig. 5 Probability of growth to a limit cycle as a function of the
fractional reduction of the oxygen flow rate.
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arrest the instability once it had grown considerably. We note that, in
Fig. 8, although the overall probability of growth is larger for the
more unstable, shorter injector length, this case also yields a larger
decrease in the growth probability for delay times of 3τF∕2
and 5τF∕2.
The time delay between the two blockages also determines the type

of first tangential limit cycle, when one develops. In particular, when

the time delay is close to 0 (modulo τF), the limit cycle has the shape
of a standing wave; whereas for time delays closer (modulo τF) to
τF∕6 and 5τF∕6, the limit cycle has the form of a spinning wave,
traveling in the counterclockwise direction and clockwise direction,
respectively.
Figure 9 shows, for the injector length of 0.135 m, a pressure

contour plot of the fully developed limit cycle in the polar, axially
averaged acoustic solver grid, as well as a contour plot of temperature
in one of the cylindrical injector grids at standard operating con-
ditions. The somewhat irregular shape of the pressure contour plot is
due to the fact that the limit cycle contains acoustic modes of lower
amplitude, in addition to the first tangential: specifically, a second
tangential mode and a subharmonic; the reader is referred to [3] for a
detailed spectral description of the acoustic limit cycle for this
configuration. On the temperature contour plot, a diffusion flame is
seen to develop in the mixing layer between oxidizer, fuel, and hot
coflow streams.
Figure 10 shows a snapshot of the pressure and velocity distri-

butions in one of the injectors at r � 3∕4R: a longitudinal acoustic
wave of length four times the injector length can be observed. This
result is consistent with a classical quarter-wave tube with one open
end and one closed end.
To explore interactions between other injector pairs, we perform a

set of lower-dimensional PCE simulations, in which the blockage
duration is set to equal τF, and the rest of the sample space variables
vary in the same fashion as the simulation presented previously.
Table 1 presents the sensitivity of each possible injector pair, in terms
of the overall possibility of growth. As can be seen on this table, the
most sensitive cases are those that feature at least one injector on the
outer ring.We also note that the central injector has little effect on the
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stability of the system, with no possibility of growth to a limit cycle
when both blockages occur in this injector.

B. Potential for Active Control and Suppression of the Developing
Limit Cycle

In the previous subsection, we observed that blockages in one or
more of the offcenter injectors may lead to the development of an
instability.Here,we consider the potential for active control via inten-
tionally generated blockages, in order to reduce a growing instability
back to the initial operating conditions. We do not necessarily ad-
vocate that injector blockagewould be an optimal or even acceptable
method of control. Rather, the point is to show that a designed
disruption can be effective in countering a developing instability.
First, we shall consider a set of deterministic simulations in which
two or more “pulses” are introduced into the chamber.
Specifically, we shall denote a single pulse to be a blockage in

injector 9 (as labeled in Fig. 3), of duration τF and peak mass flow
reduction of 90%, followed by a blockage in injector 10, of the same
duration and mass flow reduction. The time delay between these two
blockages is τF∕6, which, combined with the durations for τF chosen
here, causes the development of a traveling first tangential limit cycle.
We are interested in using a similar pair of blockages (or more than

one pair) in order to suppress the growing instability and return the

system to standard operating conditions. To this end, simulations
have been performed in which an additional pair of blockages in
injectors 9 and 10 have been introduced to the system, with a time
delay from the first pair ranging between τF and 10τF (note that the
minimal time delay of τF is dictated by the chosen blockage
durations). We consider these subsequent blockages to be “anti-
pulses,” which can be viewed as a potential control mechanism for
bringing the system back into its normal operating condition.
It has been found that the subsequent pair of blockages can bring

the system back to the original operating conditions, but only if it
occurs soon after the first pulse and is approximately τF∕2 out of
phase with it. As can be seen in Fig. 11, a single antipulse with a
delay of 3τF∕2 can arrest the growth of the developing instability.
However, antipulses of longer time delay from the initial perturbation
(even when they are τF∕2 out of phase with it) can only reduce the
magnitude of the developing instability, after which it starts
growing again.
In Fig. 11, we see that, even though single antipulses with a delay

of 5τF∕2 and larger are unsuccessful in causing a decay to 200 atm,
they do reduce the energy of the growing instability. This suggests
that a combination ofmore than one antipulse can stabilize the system
even after a long time delay. To explore this possibility, we have
chosen the case with an antipulse for which the time delay is 17τF∕2,

Table 1 Summary of probabilities and types of instability encountered for all possible
injector pairs (not including mirrored configurations)

Injector pair Probability of growth Standing wave Spinning wave

1-1 (both inner ring) 0 No No
1-2 (inner/middle ring) 0.271 Yes No
2-2 (same injector in middle ring) 0.245 Yes No
2-3 (separate injectors in middle ring) 0.326 Yes Yes
1-5 (inner and outer ring) 0.482 Yes No
2-6 (middle and outer ring) 0.619 Yes Yes
2-7 (middle and outer ring) 0.563 Yes Yes
2-8 (middle and outer ring) 0.507 Yes No
9-9 (same injector outer ring) 0.498 Yes No
9-10 (separate injectors in outer ring) 0.671 Yes Yes
9-5 (separate injectors in outer ring) 0.622 Yes Yes
9-6 (opposite injectors in outer ring) 0.573 Yes No
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Fig. 11 L2 norm of pressure deviation from the standard operating condition of 200 atm, for a set of deterministic simulations with one or more injector
blockages in the outer ring.
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and we have run a set of simulations adding an additional antipulse,
with a delay of 19τF∕2 to 29τF∕2.
The addition of the second antipulse can bring about a decay to

equilibrium, provided that it follows quickly after the first. In
particular, additional antipulses for which the delay is either close to
19τF∕2 or 21τF∕2 (the latter of which is shown in Fig. 11), can
reinforce the first antipulse sufficiently to cause a decay to 200 atm.
From these results, it can be concluded that a blockage in the

injector can act not only as a destabilizing mechanism but also as a
control mechanism aimed at returning the combustion chamber
back to its normal operating conditions once an instability has been
detected. Based on the results of the simulations presented here, there
are two possible avenues toward achieving this goal: either a single
blockage-induced antipulse that is introduced sufficiently quickly
after the destabilizing event or a set of antipulses, close in time to each
other, to jointly reduce the energy of a higher-amplitude instability,
after a longer time delay.
Figure 12 provides contour plots of the simulation with a 3τF∕2

antipulse. In it, we can see the original spinning wave caused by the
first pair of blockages and its disruption by the antipulse. The top left
plot shows the initial traveling wave caused by the first pair of
blockages. The top right plot shows the second blockage pair
disrupting the traveling wave. The bottom plot shows the decaying
wave after antipulse caused by the second blockage pair. The
resulting pressure wave, in the shape of a first tangential spinning
wave, has a magnitude below the triggering value and thus decays to
zero amplitude at the mean value of 200 atm.
To encompass a larger parameter space, we also present results for

a PCE simulation that, similar to the aforementioned deterministic
results, deals with two pairs of blockages, each of which takes place
in injectors 9 and 10 with a time delay of τF∕6 between them. The
sample space variables are the magnitude of the first pair of block-

ages, which varies uniformly between 0 and 1; the magnitude of the
second pair, similarly varying between 0 and 1; and the time delay
between the two pairs ranging from 0 to 5τF∕2. First, we shall
consider the conditional probability that the second pulse will return
the system to equilibrium, conditional upon the first pulse being
strong enough to set up a limit cycle. Figure 13 plots the conditional
probability of decrease to equilibrium as a function of the magnitude
of the second pulse pair: as can be expected, this probability increases
for a stronger antipulse.
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Fig. 13 Conditional probability of decay to equilibrium as a function of
the delay between pulse and antipulse.
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Figure 14 shows the conditional probability of decay to equi-
librium as a function of the delay between the two pulse pairs. Again,
we can see that an antipulse with a delay that is an odd multiple of
τF∕2 can cause a decrease to the initial operating condition of a uni-
form pressure at 200 atm.
For a more detailed exploration of using the second pulse as a

stabilizing agent, we fix the magnitude of the first pulse and consider
the probability of decay to standard operating conditions for an anti-
pulse that is controlled but for which the parameters (specifically, its
delay and magnitude) retain some variability: this variability
accounts for the fact that a practical control system requires a certain
error margin.
Figure 15 shows, for a destabilizing pulse of 50% magnitude, the

probability of decay as a function of the delay between the pulse and
antipulse. Two cases have been considered: one inwhich the potential
control system generates a strong antipulse, of magnitude in the 70–
100% range, and one for a weaker antipulse of magnitude 50–100%
It can be seen that, for the strong antipulse, the probability of decay

to the standard operating conditions is high when the time delay is
close to an odd multiple of τF∕2, and it is particularly high for
antipulses with a shorter time delay (the maximal probability of
decay) near 0.5τF, which is almost one for a strong antipulse. It can
also be seen that the reduction of the antipulse’s strength reduces the
possibility of decay considerably, by as much as 0.15 at the local
maxima near 0.5τF, 1.5τF, and 2.5τF.

We also examine the probability of decay as a function of the
fractional magnitude of the antipulse for three antipulses for which
the delays from the destabilizing pulse are approximately 0.5τF,
1.5τF, and 2.5τF. This is plotted in Fig. 16.
Once again, it is seen that control is achievedmost easily when the

antipulse follows quickly after the destabilizing pulse: for the time
0.4τF–0.6τF delay range, we can see that any antipulse of magnitude
over 70% is almost guaranteed to cause a decay to standard operating
conditions. For a longer time delay, the antipulse’s magnitude would
have to be increased to over 80% in order to obtain a significant
probability of decay.
For a destabilizing pulse of a smallermagnitude, it is to be expected

that control is achieved more easily, since the instability takes longer
to grow. This is confirmed by Figs. 17 and 18, which plot the
probability of decay as a function of the time delay of the antipulse
and its magnitude, for a destabilizing pulse of magnitude 30%.
In these figures, it can be seen that the overall probability of decay

is larger than that for the 50%magnitude destabilizing pulse; decay is
almost certain for an antipulse of magnitude over 80% and a time
delay in the 0.4–0.6τF and 1.4–1.6τF ranges. In conclusion, the
results of this section suggest that an intentionally introduced
antipulse caused by injector blockages can be a highly effective
control strategy. This is especially true if the antipulse follows
quickly after the destabilizing event and is in the correct phase with
respect to it (although it does not have to be precisely timed).
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Fig. 15 Probability of decay to equilibrium as a function of the delay
betweenpulse and anti-pulse, for a destabilizing pulse ofmagnitude 50%.
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Fig. 16 Probability of decay to equilibrium as a function of the
fractional magnitude of the antipulse, for a destabilizing pulse of
magnitude 50%.
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Fig. 17 Probability of decay to equilibrium as a function of the delay
between pulse and antipulse, for a destabilizing pulse of magnitude 30%.
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Fig. 14 Conditional probability of decay as a function of the fractional
blockage for the second pair of pulses.
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V. Conclusions

The method of stochastic simulation via polynomial chaos
expansion for a LPRE combustion chamber, previously developed
and described by Popov et al. [4], has been extended to include the
effects of the injector feed system. A single blockage in the oxygen
flow of an offcenter injector can cause the development of a standing
wave first-tangential-mode limit cycle. Subsequent blockages,
introduced either by accident or intentionally, can either modify the
nature of the limit cycle to a traveling wave or bring about a decay of
the limit cycle to the initial operating uniform pressure of 200 atm.
The capability of subsequent antipulses to bring about a decay of

the instability decreases, as more time elapses since the triggering
event. For a case in which considerable time has elapsed since
triggering, and the instability has grown in magnitude, a single
antipulse is not sufficient to cause a decay of the instability, but two
antipulses closely following each other may have the desired effect.
It is found that the length of the injector channels have considerable

influence on the stability characteristics of the system. When the
channel’s first longitudinal resonant mode is close in period to the
first tangential mode of the combustion chamber, the injectors have a
destabilizing effect, with higher probability for the development of a
limit cycle, and a higher magnitude of the limit cycle than when the
period of the injector’s first longitudinal mode equals 3τF∕2.
Overall, stochastic simulation via the PCE method provides a

useful tool for the analysis of this highly complex system and for
determining possible routes to control the development of
instabilities in the LPRE combustion chamber.
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Fig. 18 Probability of decay to equilibrium as a function of the
fractional magnitude of the antipulse, for a destabilizing pulse of
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