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A new method is proposed for calculations of rare-event rocket combustion instabilities. Acceleration of the
combustion chamber is modeled as a stochastic process of long duration and moderate amplitude. Using a simplified
model for the effect of acceleration on the evolution of the first tangential mode of pressure within the chamber, a
modified sampling distribution is obtained that yields higher occurrence of the rare event: in this case, growth to
instability. Statistics are then calculated for the original distribution of the stochastic process using an importance
sampling procedure. Knowledge of the likelihood ratios between the real and modified probability density functions
allows a low-cost computation of the probability of the rare event of triggering the combustion instability by low-
amplitude acceleration fluctuations. There are two distinct regimes of high and low probabilities of triggering, with a
critical acceleration amplitude threshold between them; in the low-probability regime, the probability of triggering
increases exponentially with increasing acceleration amplitude. The probability of triggering increases with
increasing duration of the stochastic acceleration. This method of low-probability event analysis can be extended to

other instability-triggering mechanisms.

Nomenclature
a = speedofsound, m/s
a = sample space variable for acceleration, m/s>
ay = expected root mean square of acceleration, m/s>
a® = continuous acceleration history, m/s?
C = constant used in Eq. (2)
E = rate of heat release, W/ m3
F = inertial force, N
j = imaginary unit; v/—1
m; = modified mean for acceleration probability density
function, m/s’
P; = cumulative likelihood ratio
p = pressure, N-m™
p; = discrete likelihood ratios
R = chamber radius, m
t = time, S
u; = Cartesian velocity component, m/s
y = ratio of specific heats
p = gas density, k
oy = power spectral density of ideal white noise acceleration
Subscripts
i = index for time step
j = index for Cartesian coordinates
O = oxidizer
0 = undisturbed state
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I. Introduction

HIS work addresses the problem of liquid-propellant rocket

engine (LPRE) instability: a well-known rocket engine
phenomenon in which the high-energy release of combustion
reinforces acoustic waves within the combustion chamber to a
destructive amplitude. The dynamics of LPRE instability are highly
nonlinear and challenging to predict [1,2] but, nevertheless, each new
rocket engine design requires that this potential mode of failure be
prevented [3].

Two main types of LPRE instabilities are known to occur. In
“chugging” instability [4], the pressure distribution within the
combustion chamber is spatially uniform but varies with time. This
type of low-frequency instability is driven by the coupling between
the mean pressure and the propellant mass flux: as such, it can be
counteracted by the introduction of damping elements in the injector
feed system. Screeching instability, on the other hand, occurs when
an acoustic wave from one of the dominant resonant modes of the
combustion chamber receives energy from the combustion heat
release and increases to a destructive amplitude [5]. As this is a
phenomenon that occurs mainly within the combustion chamber, its
prevention is more difficult, usually involving the use of baffles
within the combustion chamber, which decrease performance,
or fine tuning of the injector configuration [3] that, when done
experimentally, requires costly design iterations. Therefore, there is
strong motivation for the development of simulation tools for the
analysis of screeching instability. For LPRE combustion instability,
the oscillations are acoustical, although highly nonlinear. In other
combustors for solid rockets, ramjets, and gas turbines, a
combination of acoustic and kinematic wave propagation can occur.
The wave traveling in the downstream direction might be kinematic,
i.e., moving with the material. Common examples are vortex
structures and short-wavelength entropy (or temperature and
composition) undulations. These can be reflected as acoustic waves
that travel upstream to regions of injection and/or combustion; there,
they can cause another kinematic wave to form and propagate
downstream. A cyclic behavior can occur. These are uncommon in
LPRESs, and they are inherently of lower amplitude and less negative
consequence compared to fully acoustic oscillations. They will not be
considered here. Nevertheless, vorticity and entropy variation are
essential in the combustion process. The turbulent combustion
models in previous analyses [2,6-9] consider these matters. The wave
propagation is primarily an irrotational process, weakly modified by
the rotational effects that occur on length scales much smaller than the
acoustic wavelength, i.e., the transverse dimensions of individual
coaxial injectors or wall boundary-layer thicknesses. Our model
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takes advantage of this fact by considering the wave dynamics to be
irrotational. The main mechanism for damping of LPRE instabilities
has long been known to be caused by nozzle outflow of acoustical
energy [1,10,11]. The nozzle-damping physics are most clearly
quantified by a perturbation scheme [12]; although, of course, it is
represented in the computational fluid dynamics (CFD) models. That
primary effect remains in our model.

In previous studies, we considered various types of disturbances
that occurred at operating conditions wherein the LPRE was stable to
small-amplitude disturbances. That is, below some threshold
disturbance, the engine returned to steady-state operation; whereas
above the threshold, the oscillation was triggered and grew to a limit
cycle. The studied disturbances had short durations on the order of the
period of oscillation for a resonant acoustic mode. However, we know
the following from simple oscillatory systems, such as a mass with
spring or a pendulum. An oscillation can be forced to a limit-cycle
oscillation with a single pulse of sufficient magnitude. Or, many
small pulses, properly organized over a longer duration, can yield the
same result. Proper organization is a key concept: if the many small
disturbances are random, cancelations due to phase differences
and directional differences are highly likely and development to a
limit cycle is highly unlikely. Nevertheless, there is a small chance
that the random forcing becomes proper and a limit-cycle results. In
this paper, we address this low-probability triggering for LPRE
triggering.

There are multiple types of disturbances that can trigger screeching
combustion instability, such as disruptions in the propellant injection
process, shedding in the combustion chamber of large rogue vortices
that eventually flow through the choked nozzle [13], significant
fluctuations in local burning rates [6,7], or an acceleration of the
entire LPRE [6]. In all of these studies, the limit cycle of the observed
acoustic instability was independent of the triggering event, and it
had the shape of a first tangential acoustic mode for the cylindrical
combustion chamber. In this work, we extend the analysis of
acceleration-caused instability by considering prolonged acceler-
ation disturbances of a stochastic nature; again, when an acoustic
instability develops, its limit cycle has the shape of a first tangential
acoustic mode for the cylindrical combustion chamber.

The main goal is to estimate the probability of occurrence of rare
events, such as the development of an acoustic instability in a rocket
engine that is subjected to a period of random acceleration of relatively
low amplitude. Previously, it has been established [8,9] that a short
[O(1 ms)] acceleration pulse of high amplitude [0 (2000 m/s?)] was
capable of triggering an acoustic instability, provided its frequency
matched the acoustic frequency of the combustion chamber. Another
likely trigger of instability would be a longer [O(20 ms)] acceleration
pulse of lower amplitude [0 (100 m/s?)]: this acceleration disturbance
was modeled as a smooth stochastic process with a fixed mean rms
amplitude a., [see Eq. (14)]. Such an acceleration history may come
about due to the random nature of the aerodynamic forces acting
on the rocket. The question to answer is the following: If the
acceptable likelihood of instability development is very low, such as
1/10,000, at what level of the mean rms amplitude a,, is this
probability exceeded? An additional question of interest is which
realizations of the stochastic process lead to an instability, as well as
what they have in common.

Because we are interested in the estimation of very rare stochastic
events, a straightforward Monte Carlo simulation is computationally
inefficient: estimating the actual probability of a random event at the
95% confidence level, when that probability is on the order of
magnitude of 1/10,000, would require approximately four million
samples. To overcome this obstacle, we use the importance sampling
method [14] to perform variance reduction. Importance-sampling-
based variance reduction is a well-known tool for rare-event
simulation, which found wide application in economics to problems
such as credit portfolio risk assessment [15-18], as well as in signal
processing [19], when particle filtering is required. The present work
serves in part to demonstrate the effectiveness of this approach to the
field of computational fluid dynamics for problems that require the
analysis of statistical outliers.

II. Governing Equations

This study considered a 10-injector cylindrical rocket engine,
which was previously shown to be conditionally unstable, with a
limit-cycle instability that could be triggered by a preexisting
pressure wave [2], a pressure pulse [7], an injector blockage [6], or a
whole-body acceleration of the combustion chamber [8], which is the
disturbance considered here. Only transverse acceleration and first-
tangential-mode instability will be considered in this work. The
combustion chamber is a cylinder for which the lengthis L = 0.5 m
and for which the radius is R = 0.14 m, with the injectors
distributed in three rings: with one injector at the center of the
chamber, three injectors at a radius of »r = R /2, and the remaining
six injectors spread evenly at a radius of r = 3R /4 from the center
(see Fig. 1).

Each injector consists of two concentric ports, the inner of which
serves as the oxidizer port and has a radius of 0.898 cm; the outer,
annular port has an inner radius of 0.898 cm and an outer radius of
1.1 cm, and it serves as the fuel inlet. Both fuel and oxidizer injector
ports have lengths of 11.5 cm. For this case, the fuel is methane (CH),
the oxidizer is liquid oxygen (LOX), and the mean pressure inside the
combustion chamber at standard operating conditions is 200 atm. For
more details of this computational configuration, the reader is referred
to the work of Sirignano and Popov [2], and Popov et al. [6]. This
computational algorithm has previously been compared to existing
experimental data [9,20,21] and found to accurately predict single
instances of instability onset at low computational cost: in this work,
we build on this algorithm by coupling it to a Monte Carlo simulation
framework with a variance reduction strategy.

Here, we solve for pressure and velocity in a reference frame
fixed to the combustion chamber, which undergoes irrotational
acceleration aC(f). Therefore, in the accelerating frame, the fluid
experiences the inertial force

F; = —pa“(1) )

Following Popov et al. [8], with the inclusion of this inertial force,
the momentum equation for the combustion chamber becomes the
following:

du; Jou; C op c
i i, 2 9P ey 2
o oy, T pan @

and the wave equation governing the evolution of pressure is as
follows:

’p 2 *p dp 0a® oE
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The inertial force also modifies the pressure boundary condition at
the chamber walls, for which the form is

ap _p'ru;  p'lrag .
on  CR, C @)
where u, is the velocity component tangential to the boundary; R,
is the wall boundary radius of curvature; and n and a$ are,
respectively, the unit outward normal vector at the boundary and the
component of the acceleration in that direction.

III. TImportance Sampling for Low-Probability
Event Estimation

In this work, the acceleration disturbance a€ () is modeled as a
smoothed white noise (the derivative of a Wiener process) applied for
t; s. Thus, we take a®(¢) to be a continuously differentiable random
process defined by a discrete sequence A; of random vectors that set
the value of a®(¢) at discrete points in time ¢;, i = 0,1, ..., N — 1.
The time points ¢; are uniformly distributed with spacing determined
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Fig.1 Cylindrical combustion chamber and injector distribution (left), and axisymmetric cylindrical grid used for the solution of each of the 10-injector

jet flames (right).
by aparameter ¢, = f;,| — t;. Therefore, N = t,/t,. More specifically,
fori=0,1,...,N—1,

aC(t;=ix1t) = A, (5)

a“(tip = (I +1) x 1) = Ay (6)

z(t—t;) L (m(t—1t)
aC(t; <t<tyy) = cos? (2—%1)14{ + sin? (2—151 A
(7

The random variables A; are independent and identically
distributed, sampled from a two-dimensional uniform Gaussian
distribution N (0, ¢%) with a mean of zero and a standard deviation of
o. A straightforward calculation shows that ¢ relates to the root-
mean-square (rms) value of the one-dimensional disturbance a$ (¢)
(say, along the x axis) via the simple equation

ay = \/%E[[)td (a€(1))? dz] = ? ®)

In Eq. (8), the expectation E[-] is taken with respect to A;.
For the disturbance signal a€(f) to approximate a white noise
process as t, — 0, it is necessary for o to satisfy the scaling law

- %
=r (©)]

where o is a constant. The scaling law [Eq. (9)] should be expected:
as is well known, a Wiener process, discretized over time steps of

length ¢, requires increments proportional to ,/7; in order for its
autocorrelation over a fixed time level (such as the period of the first
tangential mode 7y = 0.453 ms) to converge as we take #; — 0.
Because we are approximating the derivative of a Wiener process, the
correct level of the random vectors is ¢ = const(,/%;/1,), which
leads to 6%, = const. in order to get convergence (in the weak sense,
when we integrate over a given time interval). In the Appendix, we
show analytically that a€(¢) converges to white noise under the
scaling law [Eq. (9)] as t; — 0 by explicitly computing the power
spectral density (PSD) S, (w) of a$(f). S,(w) is a description of the
power of aS$(¢) versus frequency and is defined via the Fourier
transform A , (jo) of aS(#), truncated in [0z,] as

.1 .
Sa(w) = lim _E[le(fw)|2] (10)
ty» 0ty
More specifically, we derive the exact expression
203
Sa (60; ts) = t_20

2 2
[—ﬂz)] (1 — cos(Qmwt,)) (11

20(w?t2 —

(where we explicitly denote the dependence of the power spectral
density on ¢,) and show that

Sy(@: 1, = 0) = limS, (w; 1,) = o} (12)
t—

Therefore, a$(f) indeed approximates a white noise process
because white noise can be equivalently defined as a stochastic signal
for which the power spectral density is constant [22]. The parameter
o, defines the power spectrum of the white noise signal approximated
by a$(f) and appears as a natural parameter that characterizes the
disturbance. Notice that a,, the actual average power of a,(f), from
Eqgs. (8) and (9) increases to o0 as t; — 0, as it should because a pure
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Fig.2 Power spectral density of the disturbance signal afmﬂbr sampling intervals of Eb.OS, 0.01, and 0.02 ms.

white noise signal has infinite power. However, we can interpret o as
an rms acceleration through Egs. (8) and (9) by using a nominal 7,
such as 7. Namely, we introduce the equivalent parameter

_ﬁ %0
a, =

r 7,/1'1:

and further results will be expressed in terms of a,,. In particular,

1 la—0|?
A~ _ 14
" 2n(dee3)dl, eXp( (8r/31,)a2, (14

13)

where the preceding formula reads as “A; is distributed accordingly
to the following probability density function (PDF)”; and the reader
should not be surprised that the right-hand side has units of inverse
acceleration because a PDF has the inverse units of its sample space.

Figure 2 plots the PSD S, (w; t,) normalized by o3 for different
values of #,. It is seen that the adopted disturbance model [Eq. (7)]
constitutes essentially a band-limited white noise model. As
discussed in Sec. IV, the disturbances that tend to cause triggering
exhibit strong energy content around the first-tangential-mode
frequency. Therefore, it is expected that the probability of triggering
is not affected significantly by the choice of 7,. provided that
(2nty)/7r < 1 and the disturbance signal behaves as band-limited
white noise for the first-tangential-mode frequency. In the following,
we fix 7, = 0.01 ms. This choice provides a reasonable compromise
between more closely approximating pure white noise (by taking z, to
be small in comparison with the period of the first tangential mode,
7r = 0.453 ms) and preserving the smoothness of the acceleration
a€ in relation to the simulation time step dt = 2.5 x 1077 s. Indeed,
for t; = 0.01 ms, the relative error

|Sa(a); ts) - Sa(a); Iy = 0)|/Sa(w7 I, = 0)

at the first-tangential-mode frequency wp = 27/tr = 13.87 x 103
rad/s is 0.25%. It is also interesting that the relative error is
independent of 63. This is also established numerically for the values
t, = 0.02 ms and ¢, = 0.005 ms (see Table 1 in Sec. IV) in support
of the previous analysis.

The idea of the present importance sampling approach to variance
reduction [14] is to generate the sequence A; using a probability
distribution N (m;,6%), with m; selected as explained in the
following text, as a function of the solution at 1 = #;_; so that the
oscillation amplitude will tend to increase.

Therefore, we set
1 la —m;|?

A~ - 15

" anldep /3t ‘”‘p( (8e1/31,)d2, 1>

And, because the distributions in Eqgs. (14) and (15) have the same
support (namely, the entire plane), samples taken using the modified
distribution (with mean m;) can be used to calculate statistics for the
original distribution [see Eq. (20)].

More specifically, the target PDF, Py (A, Ay, ..., Ay), of
getting a particular string of vectors {A;, A,, ..., Ay} in our
stochastic calculations is given by

i 14, -0
P A A, ..., Ay) = —
urge( A1, Az - Ay) Hzn@n/zzs)a%f"p( Bc/31,)d2,

(16)
On the other hand, as m; is a function of {A, A,, ..., A;_;}, we
have that the modified sample PDF, P, gifica (A1, Ao, ..., Ay), of

getting a particular string of vectors {A |, A,, ..., Ay}, isas follows:

Prodified (A1, Azs - .., Ay)

= P(AI)P(A2|A1)...P(AN|A1,A2, "'7AN—1)

_ H%CXP _ ”At _mi||2 (17)
24t /31,)d2, (85 /31,)az,

i

because Eq. (15) implies that, provided m; is a unique function of
{A], Az, P A,‘_]}, then

P(A;|A, Ay, o AL =

exp| - [A; —m|*
27r(4rF/3ts)a%F (81F/3ts)a$F
(18)

Table1 Comparison between probabilities of growth to instability for different values of ¢

ty = 0.005 ms, ¢, = 0.005 ms, t; = 0.01 ms, t, = 0.01 ms, ty = 0.02 ms, ty = 0.02 ms,

mean probability CI width mean probability CI width mean probability CI width
a,, = 68.1 m/s* 0.80 0.051 0.81 0.050 0.80 0.052
a,, =17.1 m/s’ 3.2 x 107 3.6 x 1070 3.1 x 107 3.4 x 1070 3.1 x 1073 3.5x 1070
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Next, we consider the product of importance weights

Pirger(A1, Ag, ..., Ay)
Prodifiea (A1, Azs -, Ay)
_ 1—[ exp(—(||A;[1?/(8zr/31,)az,))
Jexp(=(|A; —m;||*/(8zp/31,)az,))

PL=

19)

which tells us how much smaller or larger the overall probability of
getting a particular sequence of A; would be if we were sampling
from the true stochastic PDF rather than the sampling PDF used in the
present calculations. Then, any statistic (F(A;, A,, ..., Ay)) with
respect to the distribution Py, can be estimated based on samples
from the modified sampling distribution P ,egifieq S

(F(A1, A, -~»AN))E/F(alsazv coos@n) APgrger
Plarget
=/F(a1,a2, -~-7aN)Pl&deodiﬁed
modified
1

~
~

P, F(A|, A, ...,Ay) (20)

modified

N

samples p

where we use dPpogifica and APy t0 denote integration over the
probability measures defined by the PDFs P ogifieq and Piyger
respectively.

The particular statistic that we want to analyze in this work is the
probability of growth to an instability:

Pgrowlh = /;{growlh(a] y Ay s aN) dPlarget (21)
where ygrown(@1: @2, - .., ay) is the indicator function for a sample
(a, a,, ..., ay)thatexhibits growth (defined as increasing acoustic

energy at the end of the simulation). Then, Eq. (21) gives the estimate

Z)( growth P L

(22)
N samples

P growth =

In the present simulations, the samples from P, gifeq are used,
which lead to instability much more often than the samples from
Parger» but their importance weights are smaller, thus resulting in the
correct calculation of the overall probability of instability
via Eq. (21).

We next discuss the choice of m; in Eq. (15). The m; are best
chosen so that the modified sampling distribution generates many
samples that grow to instability. To do this, we introduce a simple
control mechanism for the choice of m; based on previous knowledge
of the behavior of the combustion chamber. Specifically, from
Sirignano and Popov [2] and Popov et al. [8], it is known that the
10-injector combustion chamber develops an acoustic instability in
the shape of a first tangential acoustic mode for the cylindrical
chamber and that perturbations in the shape of a first tangential mode
will grow if their amplitude is greater than 20 atm.

We denote P(t) to be the coefficient of the first tangential mode in
the order-one Bessel function expansion of p(x, t) — po, where p; is
the initial steady-state pressure, and we denote P(¢) to be the rate of
change of P(). Based on Eqs. (3) and (4), a simple model for the
effect of acceleration on the evolution of P(¢) and P() is that aC is a
source term (but definitely not the only one), which contributes to the
rate of change of P(r):

dP(1) _ pa* c

FTa (nonacceleration terms) + = (23)

Note that the preceding equation is a model that is only required to
provide a good guess as to which m; causes an increase in the
oscillation amplitude; provided variance reduction is attained, the
choice of m; is inconsequential for the final probability prediction, as
the importance sampling process removes the effect of the modified

PDF. However, an appropriate choice for m; can considerably
increase computational efficiency. We make no claims to the
exactness of this model but, as we shall see later, it is effective in its
purpose.

To increase P(t), an appropriate choice for the mean of the
modified distribution m; is to take a vector that is in the direction of
P(r). More specifically, we take

2m/s> P 20
= m/s =1« max(20 atm — || P;_, ||, 0) s (24)
atm ||P,_,|| 21 ms

i

that, provided that P;_; has not grown above 20 atm, sets a bias in the
realization of the acceleration time history that drives P to increase in
amplitude. ) .

In particular, the direction of P will be close to the direction of P;_;
for the time interval [#;_;, ¢;] because the length of that time interval is
small (about 1/50th) when compared to the acoustic oscillation
period of the chamber. Therefore, as the modified distribution will
yield an a€ that is biased in the direction of m ;» and hence P, the
source term on the right-hand side of Eq. (23) will have a bias
proportional to

20
max(20 atm — ||P,_;],0) x B
21 ms —¢;

1

toward increasing the amplitude of P. The factors max(20 atm —
|1P;_1]l,0) and (20 ms/21 ms — ;) are designed to bias the modified
distribution away from samples that have a small pressure amplitude
(the first factor) late in the simulation (the second factor) because
those samples are unlikely to lead to an instability.

With the aforementioned definitions of the various components of
the importance sampling procedure given, its operation in the context
of an acoustic instability simulation is as follows:

1) If the time step is between ¢;_; and ¢;, two endpoints of one of the
N intervals evaluate a© according to Eq. (7) and use its value in the
wave equations.

2) If the time step has justreached #;, a) calculate P;, the coefficient
of the first tangential mode in the order-one Bessel function
expansion of p(x,t) — py; b) approximate P;~ (P; — P;_/t,),
where ¢, is the length of the time interval between #;,; and t;;
c) substitute P;, P;, and ¢t; in Eq. (24) to obtain m; |; d) sample the
random vector A ;| according to Eq. (15); ande) use A, 1, as well as
the previously evaluated A;, for the duration of the interval [#;, 7, ].

It should be noted that, in this particular application, the success of
the importance sampling procedure hinges on the existence of
Eq. (23), an ordinary differential equation (ODE) that, although not
an accurate predictor for the long-term evolution of the acoustic
wave, gives a good local-in-time approximation to the effect of
acceleration on the acoustic wave’s rate of growth. A similar first-
order model for the forcing term’s effect on the variable of interest
would generally be necessary for any application of importance-
sampling-based variance reduction to CFD simulations.

IV. Computational Results

The mechanism for the development of a tangential combustion
instability was described in detail in [2,8]. As a brief explanation, the
external acceleration creates a transverse acoustic wave within the
combustion chamber, in large part due to the effect of acceleration on
the pressure at the chamber walls [Eq. (4)]. This transverse acoustic
wave leads to oscillations in the heat release of combustion [2], via
the effects of pressure on the reaction rate, as well as oscillations in
the propellant mass flow at the injectors [6], due to a pressure wave
propagating upstream in the injector ports. Finally, the oscillations
in the heat release of combustion feed back into the pressure wave via
the second term on the right-hand side of Eq. (2), causing growth of
the pressure wave. An example of a growing acoustic instability due
to transverse acceleration is shown in Fig. 3.

Next, we consider a disturbance with nominal rms value a,, =
20.6 m/s? [corresponding via (13) to ¢, = 0.5 m/s*/2], sampling
interval 7, = 0.01 ms, and applied for z;, = 20 ms. The latter time



Downloaded by UC IRVINE on March 15, 2017 | http://arc.aiaa.org | DOI: 10.2514/1.J055276

924 POPOV, SIDERIS, AND SIRIGNANO

t=1e-5s x 107
2.0002

2.0001

2

2

y(m)

1.9999

1.9999

1.9998

-01 -005 0 0.05 0.1
x(m)

t=4e-5s x 107
2.0015

0.1
2.001

0.05 2.0005

y(m)
o

1.9995

1.999

1.9985

-0.1 -0.05 0 0.05 0.1
x(m)

t=2e-5s x 107

01 2.0006

2.0004

0.05 2.0002

1.9998

1.9996

1.9994

1.9992

t = 16e—-5s x 107
0.1 2.002
0.05 2.001
E o 2
>
-0.05 1.999
1.998
-0.1
1.997
-0.1 -0.05 0 0.05 0.1
x(m)

Fig. 3 Development of an acoustic instability due to transverse acceleration. Pressure perturbation is initiated at the chamber walls and propagates

inward, establishing a spinning tangential wave.

interval is long enough when compared to the period of a first
tangential mode 7y = 0.453 ms to allow detection of instability
triggering. However, as discussed later in this section, the
probability of triggering also depends on 7,. Using the importance
sampling method outlined in the previous section, we derive a 95%
confidence interval for the probability of growth to instability as
follows:

Prown € [1.01 x 1074:1.22 = 1074] 25)

The variance reduction method outlined previously allows the
calculation of this confidence interval based on only 2000 samples,
of which approximately 37% yield growth to instability. To illustrate
the vital contribution of the variance reduction procedure used here,
we note that calculating this confidence interval using a standard
Monte Carlo simulation would have required approximately four
million samples.

This efficient variance reduction is, to a large part, due to the
appropriate choice of the mean offsets in the modified distribution; to
illustrate this, Fig. 4 plots the likelihood ratios generated by the
modified distribution defined in Eq. (24), as well as the ratios
generated by two simpler, but also inferior, choices for the mean
offset.

In particular, the factor max(20 atm — ||P;_;||,0) in Eq. (24)
ensures that no unnecessary modifications in the sampling
distribution are made for cases when the acoustic disturbance is
already close to the critical threshold of 20 atm. This keeps the
distribution of the likelihood ratios well conditioned; if a simple
factor of 20 atm was used (alternative distribution 1, as shown in

Fig. 4), the ratio of the highest to the lowest likelihood ratios would be
much larger, leading to a wider confidence interval [6.2 x 1073
instead of the 2.1 x 107> achieved with Eq. (24)].

On the other hand, the last term, (20 ms/(21 ms — ¢;)) ensures
that samples that remain at alow acoustic perturbation level late in the
simulation receive a stronger push toward instability: this increases
the total number of samples that achieve instability. Omitting this
term (alternative distribution 2, as shown in Fig. 4) leads to a
somewhat better conditioned likelihood ratios, but also a much lower
number of samples that achieve instability, again leading to a wider
confidence interval (9.7 x 107).

Figure 5 shows a nongrowing sample and a growing sample, along
time frequency components of the acceleration history that produced
each one. As can be seen, the growing realization has a spike at the
frequency of 2277 Hz, which is close to the first tangential frequency
of 2202 Hz.

The previous results are obtained for ¢z, = 0.0l ms and a,, =
20.6 m/s?.InTable 1, we present corresponding results for £, = 0.02
and 0.05 ms to validate numerically the approximation of the target
white noise signal by a€(¢) in Eq. (7). As can be seen, fixing a,
(equivalently () and varying #, does not lead to a change in the
probability of growth (the confidence intervals overlap).

Figure 5 provides evidence that the spectral content of the
disturbance signal a$(¢) at wp, which is the first-tangential-mode
frequency, is closely connected to the triggering of instability.

Using the importance sampling procedure of Sec. III, we also
explore the variation of the probability of growth to instability as a
function of the asymptotically (¢, - 0) expected rms acceleration
a,,. Figure 6 shows this probability, as a function of a,,. For very
large a.,, the probability is practically one, which agrees with the
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Fig. 6 Probabilities of growth to instability as a function of the expected rms amplitude a;: linear-linear plot (top), and log-linear plot (bottom).

findings of Popov et al. [8], where the authors were able to destabilize
the motor using a pulse of magnitude of about 100 g and very short
duration, equal to 1/20th of the value used here. On the log-normal
version of that plot, we can also see that, for the intermediate range
of a,,, the probability of growth to instability increases in an
approximately exponential fashion, with a 10-fold increase in growth
probability caused by an approximately 7 m/s? increase in g,
Another important parameter influencing the overall probability of
growth is the total length in time of the acceleration disturbance. This
is explored in Fig. 7, which plots the overall probability of growth

0.9
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versus the disturbance duration #,; for disturbances that are allowed to
vary between the original length of 7; = 20 and 80 ms, as well as for
a., values of both 13.7 and 34.3 m/ s2. A longer duration of the
disturbance increases the probability of instability onset, but nowhere
near as much as a larger rms amplitude a, : in particular, the
probability of growth fora,, = 13.7 m/ s, even with the quadrupled
duration of 80 ms, is still lower than the probability of growth for the
a,, =343 m/ s? pulse duration of 20 ms. On the right-hand side of
Fig. 7, it can be seen that the data points follow the asymptotic
trend Py ~ A exp(Br'/?).

10!
100°F L
£
g 107"}
[e]
= —— P~ Aexp(Bt"?)
E 102l e e a.=343m/s?
% ® a.=137m/s?
3
o 1073
[2
1074
1075 : : : :
4 5 6 7 8 9

Square root of simulation duration (ms®-?)

Fig. 7 Instability probabilities vs. duration ¢, for rms amplitude levels of a,, [H37m /s Linear-linear plot (left) and linear-log plot (right).
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Additionally, Fig. 6 shows that, for rms amplitudes below
0.17 m/s?, the probability of growth to instability is zero, at least
within the stochastic accuracy of the present procedure: no
realizations grew to instability. This is consistent with the fact that the
motor itself is conditionally unstable so that small-amplitude
disturbances decay. Disturbances caused by an acceleration history
of rms 0.17 m/s? cannot accumulate quickly enough to outpace the
damping within the chamber; thus, the critical amplitude above
which a disturbance grows spontaneously will never be exceeded. To
confirm this, a nonrandom acceleration of rms amplitude 0.17 m/s>

and a sinusoidal wave pattern with a frequency matching that of the
first tangential mode was tested and failed to produce an instability;
the outcome is seen in Fig. 8. Because this type of disturbance is most
likely to cause the growth of a first-tangential-mode pressure wave
above the critical threshold, it is not surprising that the less coherent
time histories also fail. Previous work has shown that a properly
organized acceleration pulse of O(1000 m/s?) applied for a short-
duration [i.e., O(1 ms)] can exceed some physical threshold, and
thereby trigger growth to a limit-cycle oscillation. Now, we see
that substantially smaller-magnitude [i.e., O(10 m/s?)] random
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Fig. 9 Probabilities of instability vs. expected rms amplitude a; , for one- and two-degree of freedom acceleration time histories.
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vibration noise persisting for tens of milliseconds can, albeit with
very small probability, trigger growth to the same limit cycle.
Physically, there is a possibility that the random noise will include a
sequence of small but properly directed pulses that collectively
provide the forcing to exceed the threshold for triggering. As noted in
Eq. (9), the key factor is the product of the duration of the noise and
the square of the rms acceleration.

Finally, Fig. 9 makes a comparison between probabilities of
growth to an instability when the acceleration has two degrees of
freedom (in both the x and y directions, as we have been testing so far)
and when the acceleration is constrained to the x direction only. As
can be seen in the figure, for the same expected rms of acceleration,
constraining the motion to the x direction only increases the
probability of instability. This can be explained by the fact that a more
constrained motion is more likely to contain coherent periodic
components that can trigger an instability.

V. Conclusions

A new variance reduction method is proposed for the estimation
of rare instability events in a liquid-propellant rocket engine.
A modified distribution for the acceleration probability, with a
higher than real likelihood of triggering rocket combustion
instability, is introduced. The likelihood ratio is known and allows
the low-cost modified distribution to yield the actual probability in a
simple manner. Using an importance sampling scheme coupled
with a simplified ordinary differential equation model for the
evolution of the first tangential acoustic mode of the chamber, an
accurate confidence interval for probabilities on the order of
1/10,000 can be obtained from 2000 samples, whereas without
variance reduction, the number of samples required to obtain a
similar confidence interval would be on the order of four million.
Although the present study uses acceleration as the triggering
mechanism for the rare-event instabilities, the present variance
reduction method can be extended to other triggering mechanisms.
Results show that the samples that grow are those in which the
random acceleration time history has a large frequency spike near
the frequency corresponding to the first tangential acoustic mode of
the chamber. It is found that a random acceleration in one direction
only produces a larger probability of growth for a given rms a,, than
a two-dimensional random acceleration. For moderate amplitudes
of the rms acceleration a,,, the probability of growth to instability
increases exponentially with rising a,., and there is a critical
threshold for a,, below which no instability is triggered. Although
this analysis uses engine acceleration as the trigger, previous works
[2,6,7] have shown that other triggers can occur, and the limit cycle
is independent of the triggering mechanism; thus, it is expected that
those mechanisms or a combination of those mechanisms can also
lead to a rare-event instability regime.

Appendix: Computation of the Power Spectral Density of
the Acceleration Disturbance

In this Appendix, we show analytically that, as t; — 0, a$ ()
converges to white noise under the scaling law [Eq. (9)] by explicitly
computing its power spectral density S, (w; t,) and showing that

lim, _ ¢S, (w; t;) = 63

which is a constant independent of frequency. To this end, we first
express the Fourier transform of a¢(f):

. ta . N=L )
A (jw) = f aS(nei”dr="" f aC(He dt (A1)
0 i=0 1

Then, by substituting Eq. (A7) in Eq. (Al) and analytically
computing the resulting integrals, we obtain

A (jo) = j(r + 1,6/%) - W — j(ze/ +15) - V (A2)

where we introduce the expressions

20212 — ? 7’
11=————- and HL,=— A3
' 20w’ = 22) 2T 20(0?2 = %) (A3)
and the random variables
N-1 . N-1 '
W=)» A/ and V= Z Al (A4)
i=0 i=0

Then, Eq. (A2) yields

E[|A,(jo)"] = E[A,(jo) - A, (jw)*]
= (1 + e") (z) + 1267/ ) EIWW?]
+ (716 + 1) (z167/” + 1) E[VV*]
—2Real{(z; + 1,¢/%)(r e~/ 4 1,) Ef]WV*]} (AS5)

Furthermore, from Eq. (A4), and using the assumed relations
E[A; - Al = 6% - 8 (5; = 1 fori = k and zero otherwise), we can
easily compute

E[WW*] = E[VV*]=0¢>-N and E[WV*] = e/*sc*>(N —1)
(A6)

and substituting Eq. (A6) and N = t,/t, in Eq. (A5) gives an exact
expression for the power spectral density of a$ (¢) as

S,(@i1) Hm{;imAwaNﬂ}
1~ | ty

1 [26%
lim —I: Gt dr%(l — cos(Cwty))

tdaootd s

+26%(z? + 7% cosQut,) + 2717, cos((uts))] (A7)

2
2;; 73(1 — cos(Qwt,)) (AB)

s

because the second term inside the brackets in Eq. (A7) is bounded
for fixed #; and fixed w. Next, substituting ¢ from Eq. (9) and 7, from
Eq. (A3) in Eq. (A8), as well as taking ¢, — O for fixed w, yields the
desired result

. o ) . (203 b
Solwits =0 = fimSa(@it) = M\ 2 4@ = 2
5 s s N

(1 - cos(2wtx))} =0} (A9)

because, by L’Hospital’s rule,

lim, _ (1 — coswt,))/1? = 2a?
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