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ABSTRACT

Three-dimensional (3D) viscous counterflows and wall stagnation flows are analyzed with differing normal strain rates in each of the three
directions. Reduction of the equations to a similar form is obtained allowing for variations in density due to temperature and composition,
heat conduction, and, for the counterflow, mass diffusion and the presence of a flame. Solutions to the Navier-Stokes equations are obtained
without the boundary-layer approximation. For the steady and unsteady incompressible counterflows, analytical solutions are obtained for
the flow field and the scalar fields subject to heat and mass transfer. In steady, variable-density configurations, a set of ordinary differential
equations (ODEs) governs the two transverse velocity and the axial velocity profiles as well as the scalar-field variables. Diffusion rates for
mass, momentum, and energy depend on the two normal strain rates parallel to the counterflow interface or the wall and thereby not merely
on the sum of those two strain rates. For thin diffusion flames, the location, burning rate, and peak temperature are readily obtained. Solutions
for planar flows and axisymmetric flows are obtained as limits here. Results for the velocity and scalar fields are found for a full range of the
distribution of normal strain rates between the two transverse directions, various Prandtl number values, and various ambient (or wall)
temperatures. For counterflows with flames and stagnation layers with hot walls, velocity overshoots are seen in the viscous layer, yielding an
important correction of theories based on a constant-density assumption.
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NOMENCLATURE Y mixture fraction
I specific heat under constant pressure [J/(K kg)] i B Icl::; eir;iec(';lgclzﬂc;fr:pec1es
D mass diffusivity (m”/s) 1 density weighted coordinate (kg/m?)
H . specific Fnthalpy defined before Eq. (6) (J/kg) A thermal conductivity [J/(sm?)]
H :zh +(u+v ) alternative specific enthalpy (J/kg) p density (kg/m)
+w”)/2~h+07[2 ) Wm reaction rate for species (s ')
h specific enthalpy (J/kg) Tij viscous stress tensor (N/m?)
hg,m heat of formation for species (mJ/kg)
Le=A/(cppD) Lewis number .
M Mach number Superscripts
N number of species *  dimensional values
P pressure (N/ m?) " ordinary derivative
Pr Prandtl number
R specific gas constant [J/(K kg)] .
R, universagl gas constant [J/ (Kgmole)] Subscripts
S normal strain rate in the x direction (s™') i,j, k  integers for vector and tensor component designation
S, normal strain rate in the z direction (s ') m integer for species designation
t time (s) w conditions at the wall or relevant to the stagnation wall flow
U, v, w velocity components (m/s) ) conditions at positive infinite y
%02 Cartesian coordinate (m) —oo  conditions at negative infinite y
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. INTRODUCTION

Here, we treat a three-dimensional (3D) counterflow with dif-
fering strain rates in each direction. It can address counterflows
in nonsymmetric fields or wall stagnation flows for nonsymmetric
aerodynamic bodies. Two counterflowing streams might be con-
strained to have greater acceleration in one transverse direction than
in the other. The aerodynamic body at the stagnation point might
have differing radii of curvature in two mutually orthogonal planes
which are each orthogonal to the tangent plane at that stagnation
point.

There is growing interest in understanding the laminar mix-
ing and combustion that commonly occurs within turbulent eddies.
These laminar subdomains experience significant strain. Some
important work has been done here but typically in two-dimensions
or axisymmetry with a constant-density approximation. See the
work of Linan, Marble,” Karagozian and Marble,” Cetegen and
Sirignano,”’ and Peters.” Karagozian and Marble did examine a
three-dimensional strained-flow configuration where flow moved
radially inward and jetted axially outward; in addition, a vortex had
the same axis as the flow. The vortex caused the diffusion flame
sheet to wrap around the axis. Recently, Rajamanickam et al.” have
provided an interesting three-dimensional triple-flame analysis; the
imposed strain however is limited to two dimensions. There is a
strong need to study mixing and combustion in counterflows where
the imposed strain is three-dimensional. Note that Nguyen et al.
and Nguyen and Sirignano™ have recently shown the importance of
strained triple flames in practical combustors.

The “counterflow” label has been given to several types of dis-
tinct flows. One type involves two parallel, adjacent flows in oppo-
site directions and possibly in different conduits. These flows are
common in heat exchangers. ’ Another type of counterflow is actu-
ally a recirculating flow caused by an imposed swirl. = A third kind
involves two mutually penetrating flows such as that found with a
superfluid and normal fluid moving in opposite directions through
the same volume. ~ The references above are merely samples; a thor-
ough review of those types of counterflows is not intended. Here, we
focus only on a fourth kind where two streams move toward each
other in the y direction with velocities of opposite signs but then
turn toward the x and z directions before they make contact with
each other at an interface in a plane normal to the y direction. v, the
y component of velocity, becomes zero at this interface.

There is a well-established literature for steady-state viscous
two-dimensional and axisymmetric counterflows and stagnation-
point flows. ~ Strahle ~ examined the axisymmetric, unsteady stag-
nation point, including the presence of heat and mass transport
and a diffusion flame. However, three-dimensional viscous flows of
these types have not received very much fundamental treatment.
Howarth * has treated the steady, 3D wall stagnation-point flow
for an incompressible fluid. Heat transfer was not considered there.
Here, generalizations for variable-density viscous counterflows and
wall-stagnation flows are presented for several basic configurations.
Density variations through the flow due to variations in temperature,
pressure, and/or composition are considered. Heat transfer caused
by different temperature values between the two opposing streams
or between the incoming stream and a wall is examined. Also, mass
transfer for the counterflow caused by differing compositions of the
two opposing streams is considered. A counterflow with a diffusion
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flame is also considered. Still, there are some similarities between the
approach here and the portions of Howarth’s analysis.

Substantial work has occurred for planar and axisymmetric
counterflow diffusion flames with single-phase flows at moderate
pressures. The axisymmetric counterflow configuration has
also been studied for spray combustion™ "~ and at supercritical pres-
sures.”” Here, an extension will be made for a three-dimensional
counterflow at moderate pressures and a gaseous phase.

The prior counterflow and stagnation-point studies (cited
above) address typically two-dimensional configurations (planar
or axisymmetric). As an exception, Howarth addresses three-
dimensional, incompressible wall flow. They obtain a similar solu-
tion whereby a system of ordinary differential equations (ODEs)
with only one spatial coordinate remaining as the independent
variable; the description of dependence on the other spatial coor-
dinate(s) is given in algebraic terms. Our work here presents
similar solutions for three-dimensional flows where again only
one coordinate appears as the independent variable. The one-
dimensional appearance of the final governing equations is not
a model but still is an exact solution of a multidimensional
configuration.

Aerodynamic studies of the shape of the interface between
two counterflows have also been performed. Here, a free-stream
velocity and a radius of curvature of a counterflow-interface or a
wall radius of curvature will not be specified. Rather, the order of
magnitude of that ratio of velocity to radius is implied through the
prescribed strain rate. The incoming counterflow streams will have
a potential-flow character.

Here, we address a set of three-dimensional counterflows and
stagnation-point flows, steady and unsteady, with and without
combustion, and with and without constant density and proper-
ties. These various problems have differences but are not totally
independent.

Il. ANALYSIS

Consider, for example, a counterflow from both the negative y-
direction and positive y-direction with outflow in the z-directions.
Inflow or outflow can occur in the x-direction with the interface
surface along y = 0 and a stagnation point at x = y = z = 0. The
velocity u has the components u, v, and w in the x, y, and z direc-
tions, respectively. The flow must have a negative normal strain
rate in at least one direction; the y-direction has arbitrarily been
chosen here to be the direction with the only negative strain rate.
The z-direction has the larger positive (or equal) strain rate, while
the x-direction has a smaller (or equal) normal strain rate. If the
approaching streams have the same pressure at a distance from the
interface and its viscous layer, we expect that in a frame of refer-
ence attached to the interface, momentum balance for steady flow
yields p_co¥?eo = poo¥’. The incoming flow is in the direction of
decreasing y-magnitude. The normal strain rates in the x- and z-
directions are S; = Ju/Ox and S, = Ow/0z, respectively. Here, S
+ 82 >0and S; > 0. S; can be positive or negative. These normal
strain rates for these two opposing streams will match at the inter-
face since the velocity components are continuous there. We are
able to find a solution in the stagnation point region where these
two strain rates apply throughout the viscous layer and do not vary
with y. We consider only S; > 0, which is a classical counterflow
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with the interface at y = 0. If S; < 0, there would be sink inflow in
the x- and y-directions with outjetting in the z-direction. This case
is not addressed by our similar-solution approach. The y-directed
inflowing streams in all cases bring together fluids of differing tem-
perature and/or composition; so, heat and mass diffusion are in the
y-direction.

The two streams need not have the same upstream values for
velocity v, temperature T, enthalpy h, density p, or composition
reflected through mass fraction Y,, for chemical species m. Pres-
sure p will be given the same upstream values for the two streams.
Fickian mass diffusion and Fourier heat conduction are consid-
ered so that all fluid properties are continuous across the interface.
Some consideration is given to reacting flows. Radiation and grav-
ity are neglected. The formulation of the partial differential equa-
tions below will also apply for a stagnating flow approaching a wall
aty=0.

With the addition of terms accounting for chemical rates for
exothermic reactions, diffusion flames can be addressed by the anal-
ysis here. With a variation in the boundary conditions, the analysis
will apply to wall stagnation-point flows. There are several stud-
ies of planar and axisymmetric counterflow diffusion flames with
account given to variable density; no prior works on 3D strained
diffusion flames are known.

The governing equations for unsteady 3D flow are given as

G, %ﬁj‘{‘) -0, )
p% +Puj%+% = ZZ, (2
where, following the Stokes hypothesis for a Newtonian fluid,
el
_ %(é%) . 8%(,@(1 L)Y B 882" )
— PE et hf o + r,jg—z, 4)

oy OV a( Y,
Pt TP ~ o

pDﬁ—xj)+pc'um; m=1,2,...,N. (5)

An alternative form of the energy equation can be developed to
govern the total H of the specific enthalpy, specific chemical energy,

|
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and kinetic energy per unit mass. That is, H = h + Zf,f:lYmhf,m
+ ugug /2. Specifically, the vector dot product of u; with Eq. is
used to substitute for u;0p/Ox; in Egs. (4) and (5) is used to substi-
tute for @y, there. The Lewis number Le = 1 is considered. It follows
that

O O O 0 () 8(h+E%=1Ymhf,m))+8(umj) ©)

Por Mo o o o

o Ox;j

The nondimensional forms of the above equations remain
identical to the above forms if we choose certain reference
values for normalization. In the remainder of this article, the
nondimensional forms of the above equations will be consid-
ered. The superscript * will be used to designate a dimen-
sional property. The variables u],t*,x],p*,h*,p", and @y, and
properties 4*,A*/c;, and D* are normalized, respectively, by

(ST + 83 e /pto] V2, (ST +83) " [l /(P (ST +85 )12, ples (S
+ 85 Moo /Poos (ST + 83 )thoos (ST + 83)s oo oo and oo [poo. Tt is
understood that for unsteady flow, the reference values for strain
rates and far-stream variables and properties used for normaliza-
tion will be constants; for example, averages might be taken for
fluctuating conditions. Note that the reference length [, /(ps (ST
+85))]? is the estimate for the magnitude of the viscous-layer
thickness.

The stagnation point either in the steady counterflow or in the
steady flow against a wall will be taken as the origin x =y =z = 0.
Along the line x = z = 0 normal to the interface or wall, we can expect
the first derivatives of v, p, h, T, and Y, with respect to either x or z to
be zero-valued. For unsteady cases, only symmetric situations will be
considered so that the stagnation point remains at the origin and the
wall or interface remains at y = 0. The velocity components # and w
will be odd functions of x and z, respectively, going through zero and
changing the sign at that line. Consequently, upon neglect of terms
of O(x?) and O(z%), the variables v, p,h, T, and Y, can be considered
to be functions only of t and y. For steady flow, the density-weighted
Mlingworth transformation of y can be used to replace y with 7
= fp(y")dy’. Neglect of the same order of terms implies that u
= S1x(df1/dn) and w = S»z(df>2/dy). Note that u is independent of
z and w is independent of x in this case where no shear strain is
imposed on the incoming stream(s). At the edge of the viscous layer
at large positive n, dfi/dy — 1, dfo/dn — 1, i - 1, and f», — 5. We
define ()’ = d()/dn. Note that other transformations of the y coordi-
nate can be made, e.g., weighting by transport properties "'~ rather
than density.

Under the described situation, the following relations hold for
the terms depending on viscous stress:

Oty » 11 nd(pu) Oty 4p d dv 2p / nau  pu 17 17

R S =2 = () - LS + )= S+ S8,

%, puxSifi +pxSifi i o 3dn(fwdn) 3(1f1+zfz)dn+3(1f1+zfz)

aTZj _ 2 u IId(P.M) a(uinJ') _ 4p d d(vz/z) 4p 1N\2 7\2 1 ot ’ 7\ dv

o =puzSifs +peSofs i on ;;ﬂ(w )+7[(51f1) +(82£)" = $i1S2ffs - p(Sifi +Szf2)d77]

2d
s+ ) - Ed%(slﬂ +5:f)] 7)
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In the nondimensional form given by Egs. (1)-(7), the dimensional
strain rates S and S are each normalized by the dimensional sum
S{ +S5. Thus, the nondimensional relation is S, = 1 — S; and only
one independent nondimensional strain-rate parameter is needed.
Nevertheless, two strain rates are presented above and in the follow-
ing analysis with the understanding that one depends on the other
such that §; + 8, = 1. §; + S, will be explicitly stated in our analysis
without substitution of the unity value. This choice clarifies whether
a particular term when converted to a dimensional form depends on
S},S; or the sum of the two strain rates.

For a steady state, the continuity equation
grated to give

is readily inte-

pv = =Sifi(n) = S22(1) ®)

and then

dv _ Sifi(n) +Safa(n) dp — Sifi (1) + Saf5 (1)
dn P dn P
Thus, the incoming inviscid flow outside the boundary layer is
described by v = —(S1 + S2)# for positive 7 and v = —(81 + S2)1/p- o
for negative #. Note that the same result is found for the unsteady or
steady incompressible state where there is no need to use 7 in place
of y since p = 1 everywhere. Then, v = —(S1 + S2)y for the external
incoming flow.
Equations (7) and
mine the pressure gradient

gg:dw&ﬂ”+&ﬂ%wY+(&ﬁ+&ﬁﬁJf—wdbﬁm

Op 4d d 1
R R EEICTERNAE SR IOV ERNAY

+(Sih +32f2)8*,

)

may be substituted into Eq. (2) to deter-

L plsft” + Sofl (o) + (Sf + S~ (A1) e
(10)

It follows from the # pressure-gradient in Eq. that Op/0n is a
function only of #1. Therefore, 3*p/dxOy = 0 and 8*p/dzdn = 0. Now,
the coefficient of x on the right side of the x pressure-gradient in
Eq. must be constant. The same conclusion is made for the coef-
ficient of z on the right side of the z pressure-gradient in Eq. At
n=o0,fi=f=landf{' =f;' = f{"" = f;" = 0 which allows the two
constants to be determined. Speciﬁcally, we obtain

pufl” + 1 (o) + (St + Safa)f) + Sl(% - () =0,
pufs "+ £ (pu)" + (Suh + S2f)f’ +Sz(% ~(f))=0. an

In the outer flow with neglect of compressibility effects, the
y-momentum equation becomes
0 4pu Ov
= S S
P 33](m+m)

- (514 5) i. 12)

(]

- (Sl +SZ)’18

For steady flows, S; + S; = 1. The dependence of v on f = Sifi
+ S2f2 is shown by Eq. (8). Thus, the function f will be important in

scitation.org/journal/phf

determining both the field for v and the scalar fields. From Eq. ,
an equation for f can be formed

P,Ufm +f”(P/4) +ﬁr” + 5 (f ) = 25182( fle) (13)

Consequently, f will depend on both S; and S, not merely on S; + Ss.
The particular distribution of the normal strain rate between the two
transverse directions will matter. In our calculations, emphasis will
be placed on the planar case (S; =0, S = 1.0) where the product $;5,
is minimized, a fully three-dimensional case (S; = 0.25, S, = 0.75),
and the axisymmetric case (S1 = S, = 0.5) where the product §;S; is
maximized. The reasons for bounding the parameter (0 < §; < 0.5)
will be explained below.

The above equations can be readily applied for nonreacting
counterflow, wall stagnation-point flow, and diffusion-flame coun-
terflows as will be explained in Secs. [11-V, respectively. First, we will
treat the nonreacting counterflow in Sec.

lll. 3D COUNTERFLOW
For the counterflow, the boundary conditions for Eqgs. and
are
fi(20) = V/poofi (=00) = f5(0) = \/p-oefs (-20) = 1,
fi(0) =£(0) =0,
v(00) = —(S1 + 52)17 =—(S1+82)y
- _ )
’U( OO) —(Sl +Sz) i/jo = —(Sl +Sz)\/:,
h(o0) = hoo, h(—00) =h_co,
Yin(0) = Yinoo, Ym(—00) = Vi —oo. (14)

Thus, at plus infinity, f; and f, both behave as #, while at minus
infinity, they both behave as 7/\/p_co.

The values of v do not asymptote to a constant at +oo or
—o0; we therefore will take the boundary values for v at y* posi-
tions whose magnitudes are severalfold the expected viscous-layer
thickness, [u%/(p% (Sf + S3))]"/%. So, +0o is approximated by a
value of y > 1 or 7 > 1, while —oo is approximated by a value of
[y] > 1 or |5| > p-oco. Variable density due to temperature varia-
tion will be addressed. However, compressibility effects within the
viscous layer will be assumed to be negligible. The magnitude of
the dimensional velocity at the layer edge is [ (S} + S3 )ul /pio ]2
thus, the kinetic energy per mass based on that velocity magni-
tude will be assumed to be small compared to the ambient enthalpy
values.

Equations N

- and in Sec.
describe the scalar fields.

, and will apply here in Subsections
. They will couple with the equations that

A. Steady incompressible counterflow

For the steady incompressible flow with constant properties
(4 = 1, p= 1) everywhere including the boundary values at plus and
minus infinity, Eq. and its boundary conditions may be recast
as follows:
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A"+ (S + SR+ 81 (1= (F)7) =0,
B+ (S + o)A+ 82(1- (£)°) =0,
fi(0)=£(0) =0 fi(e0) = f{(=o0) = fi(e0) = fi(=o0) = 1. (15)

The solutions now for Egs. (15)
namely,

and (10) can be found by inspection,

fim) =) =n A =f(n) =1,

A" =L =0, fil))™ =)™ =0,
u=-S1x, v=-(S1+%)y, w=Sz,

(8% [(Si+S)y) (Szz)z.
2 2 2

The reference pressure is the pressure at the stagnation point here.
In this incompressible solution, there is no viscous shear and the
normal strain and viscous normal stress are uniform; thus, there
is no viscous force and a viscous interface layer does not appear.
The solution is an exact solution of the Navier-Stokes equation with
neglect of terms of 0(x*) and O(z%). No neglect of higher powers in
y has been made; the boundary-layer approximation has not been
invoked. The solution for pressure throughout the flow is identical
to the inviscid-counterflow pressure solution. This will not occur for
the variable-density case. Furthermore, it is noteworthy that the vis-
cous dissipation rate is uniform and positive valued. That point will
be discussed in Subsection 111 B.

For the incompressible case, we can simplify Eqgs. (4) and (5)
by neglecting kinetic energy and other terms of O(v*) compared to
thermal energy. Also, we do not consider chemical reaction and do
assume Le and A/c, are constant. Thus,

P = Pref — (16)

A dh

e - +(S1 +Sz)yd 0, (17)
A &Yy
P +Le(Sl+Sz)y d " -0; m=1,2,....,N. (18)

For the steady state, we obtain linear ordinary homogeneous differ-
ential equations. The boundary conditions at plus infinity and minus
infinity are set yielding the solutions

h_h—oo _ l PCP(SI +SZ)
hm—h_m‘z[“e’f( a7

= ;[1+erf( 7L€PCP(ZS)E +52) y)] ,

m=1,2,...,N. (19)

Ym - Ym,—oo
Ym,oo - Ym,—oo

|

it oo V)]
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B. Unsteady incompressible counterflow

The unsteady, incompressible counterflow case is also readily
solved. If strain rates and/or far-stream pressure are time dependent,
the solution is given in terms of S; (), S2(¢) and/or pyr ()

u=-=81(t)x, v=-[S1(t)+S(t)]y

w = Sz(t)Z,

das 2 1d(Si+S 2
P = Prf(t) - [ ! +s§]% _ [% + (81 +sz)2]yE
ds 2
[ alt2 SZ] 2 (20)

Note that in this unsteady case, the normalized S;(¢) + S2(¢) need not
sum to unity; Si(t) and S(¢) should be considered as independent.
The reference or initial value will be normalized to have unity value.
Solutions for the unsteady incompressible energy and species
Egs. (17) and (18) are also possible in the unsteady state with
constant A/(pcp) and Le = 1.
For the unsteady incompressible case, we have

Oh oh 9p A &h
T (S1+8)y— - = = 21
o SIS S5 T o @)
OY Yy A OYm
, m=1,2,...,N. (22
ot - (St Sy 8y Lecp y? " (22)

Equation (21) neglects viscous dissipation (Oui/0x;)7;; and the spa-
tial variation of pressure, both of which are of the order of the square
of the Mach number.

The pressures in the incoming streams are assumed steady with
the unsteadiness in the strain rates. Certain transformations are use-
ful. They were also used by Marble,” Karagozian and Marble,” and
Cetegen and Sirignano

I /‘ejof' 2Si8)d” g1 &-Eyejqr(SﬁrSZ)dt’. (23)
0

Following a material element, the value of £ remains constant. The
transformed equations for heat and mass transfer become

oh A &h Y A O*Vm
i Al ye m=12,...,N.  (24)

The well known solutions are

Pp
4/\f0 exp fo 2(S1 +S)dt] dt’ f (81 +S2)dt ])]

Ym - Ym,—oo

Ym,oo - Ym,—oo

Lepcy d ’
== 7 S1+82)d , =1,2,...,N. 25
2[ f(\l ol 260w sargar” Ly 6 t])] " )
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The incompressible steady or unsteady counterflow does expe-
rience diffusion of heat and/or mass from one flow toward the other
when the two opposing, incoming streams have differing tempera-
ture and/or composition. Since the two incoming streams have the
same X-momentum, y-momentum magnitude, and z-momentum,
there is no diffusion of momentum from one stream toward the
other. Here, although there is a nonzero dv/dy value through the
viscous layer, it is not caused by diffusion but rather by the pres-
sure gradient, ie., it is independent of y and the same velocity
solutions for u, v, and w occur if 4 = 0. In the variable density
case, the variation of density and/or properties through the interface
layer does result in diffusion of momentum from one stream toward
another.

The maximum heat or mass flux at any instant of time occurs
at y = 0. With the definition

exp[z INOE: Sz)dt']

t t > (26)
fO exp[fo 2(31 + Sz)dt"]dt’

x(t) =

the maximum instantaneous value of the heat flux is (x/2)\/pc,/mA

and the maximum for flux of the mass fraction is (x/2)\/Lepc,/mA.
The variation of x with time is shown in Fig. 1 for three cases
of variation of the nondimensional normal strain rate in the
y-direction: exponential decay to an asymptote of S; + S; = 1, expo-
nential growth to the same asymptote, and cosinusoidal oscillation
about the same value. x asymptotes to the value of \/2 in the first
two cases, while it oscillates about that value in the third case. The
average value in the oscillation is a little lower than \/2, and the wave
shape becomes steeper on the rise side than on the decline side.

In both the steady and unsteady incompressible counterflows,
all three velocity components are linear in the spatial coordinate
variables. Thereby, second derivatives of velocity are everywhere
zero, yielding zero viscous force everywhere. However, the constant
first derivatives result in a uniform viscous dissipation rate over
the full space, amounting to a uniform heat source which is being
neglected here. In particular, (Ou;/0x;)7jj = 44 (ST + 152 +3). This
same value of the viscous dissipation rate will occur asymptotically
outside the viscous layer for the variable-density counterflow and the
constant-density and variable density wall-stagnation flows. Thus, a
heat-source term that would appear in Eqs. (17) and (21) is ignored
here, assuming its effect is minor for our situations where kinetic
energy is small compared to thermal energy. Although counterflows

|
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‘S +S =1+cost S1+Sz
=1+ exp(-0.1t)
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FIG. 1. Solutions for % vs time in incompressible unsteady counterflow for three
varying strain rates.

and wall-stagnation flows are posed theoretically as extending to
infinity, the curvature of the counterflow interface or wall will limit
the domain size. Thereby, this small heat source does not in practice
extend over an infinite domain and its global impact remains small.
This conclusion will apply to the variable-density flows as well.

For the incompressible counterflow case, the results here for
the velocity fields can be extended to the case where two streams are
incoming (say, in the y and x directions) and only one (say in the z
direction) is outgoing; i.e., S; < 0 but S; + S, > 0. The reason is that
u and w do not vary with y; so, a plausible incoming stream from
the x-direction occurs. (Of course, the flow in the z and y directions
could be incoming with outgoing flow in the x direction.) However,
inflow conditions on one stream for the scalar variables would have
to be too contrived to make those scalar results useful in that case.
That is, the scalar variables for incoming flow in the x (or z) direction
would have to satisfy specifically the y dependence given by Eq. (19)
or (25).

C. Variable-density counterflow

The variable density and viscosity case requires some couplings
with Egs. (4) and (5) and with an equation of state and fluid-property
laws which affect pand p.

The pressure derivative can be determined by substituting from Egs. (8) and (9) into (12)

Op _4d IS+ SE() dp S+ A () v s s s
87112561711( [ ’7P2 1 dil;;_ 1 ; 1 ])+E(Slf1 +52ﬁ)—§(51f1+32ﬁ)£
Sui(n) +$2fa(n) dp _ Sifi (n) + Safs ()
+ S S FH dﬁ |
p51.2) =g + (S0 + 26D % =St ) #5800 |+ 5D (5t 0) + 5o )+ [ @) +5410)
—*(51f1(‘:)+52f2((f)) H]d("'[On(slfl((:)+Szf2(())|:81ﬁ(<2(2)822f2(();L?_Slﬁ((;&fZﬁ(()]d(_&Tx_%Tz' 27)
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An exact solution of the variable-density Navier-Stokes equa-
tion has been obtained subject to determination of p and y through
solutions of the energy and species equations as discussed below.
There has been no need for use of a boundary-layer approximation.
Thus, the solution here is the natural solution, subject to neglect of
terms of O(x?) and O(z?). Unlike the incompressible counterflow,
a viscous layer exists with the three normal strains and normal vis-
cous stresses varying through the layer due to varying density and
viscosity. Shear strain also exists.

Consider the nonreacting, steady case; the terms with heats of
formation in Eq. are then properly neglected. With neglect of
terms of O(x?) and O(z?), the quantity H = b+ ugu /2 ~ b+ UZ/Z
= H(#). Substitution from Eq. (7) yields

dfl:i(pl@)+4i(

aH 4 d(vz/Z))
dn dn 3dn

dn

# SB[ + ) - siseff]

& dr

4, o nd
-GS

1 7 2d ! !
o[ S+ 8o )_§?Z(Slﬁ +Sf)] 08

Le = 1 is implied here. If consideration of the total energy H includ-
ing kinetic energy is desired, it is convenient to assume a constant
Prandtl number Pr = pcy/A = 3/4. This is actually better than the
more common Pr = 1 assumption. White ~ on Page 42 shows that
for seven common gases over a temperature range to 2000 °R, 0.66
< Pr < 0.80. That value of Pr is commonly used in the analysis
of flows where normal viscous stress is dominant, e.g., weak shock
structure studies.

Combine the first two terms on the right side of Eq.
use Eq. (8) to substitute for v and dv/dy. Define

,and

Sifi(n) + Safa(n) dp  Sufi () + Szfz’(ﬂ)]
P dn p

) %[(&ﬁ’)z + (S - SiSfif ]

FO) = (st + 5.

+ 3#7)(51]‘1" + 520 ) (Sufi + Saf2)

2d
- i)dii (Slfll + Szle)(slfl + Szfz) (29)
Note that F() = O(v?). Substitute from Eq. (8) to have
4pu i*H 4d(pu)ydH

In the above analysis, no boundary-layer approximation was
used. It remains to use thermodynamic relations to substitute for
pand y in terms of h = H — v*/2 and p.

Now, we will address cases of low Mach numbers where H ~ h
gives an acceptable result. Let us examine the special case where

scitation.org/journal/phf

pu = 1. Then, Egs. and yield
A"+ (St + SR +Silh- (f)1] =0,
A"+ (Sifi + o)+ S[h - (£)']=0,

ITZ” + PT(Slfl + Szfz)]:ll =0,

! =fl(00) = '(—o00) = 2’ —00 =71
fl(o0) =i(00) =1 fi(-e0) = i (e0) = s,
£(0) = £(0) =0, (o0) =1, f’(“”):,i- (31)

In the above relation, i(5) = h*(5)/h*(c0) = h(n)/heo and the
required constants are S, S2 = 1 — S, p- oo, and Pr.

Equation indicates a dependence of the heat and mass
transport on f = Sifi + S»f2. Manipulation of the first two equations
of leads to an ODE for f with §;S, and Slszfl'fz' as parame-
ters, clearly indicating that generally f will have a dependence on
$1S2. Thus, the behavior for the counterflow can vary from the pla-
nar value of §; = 1, S = 0 (or vice versa) or from the axisymmetric
case S; = Sy = 1/2. This clearly shows that distinctions must be made
amongst the various possibilities for three-dimensional strain fields
as 815, varies between large negative numbers and 1/4. An excep-
tion will be the incompressible case with constant properties where
the $1S, terms cancel in the equation for f.

All of the terms in Eq. are of O(v?). If we neglect that order,
F~0and H ~ h. Now, an assumption about Pr offers no advantage.
Thereby, with py = 1, we obtain

2
Z—’;+Pr[81ﬁ+82fz]j—z ~ 0. (32)

The effects of the normalized strain rates (S; and S, =1 - §;)
are shown in and 3. A simple inspection of the governing
ODEs leads to the conclusion that the values for fi, f{, 2. f»» t4/x, and
w/z can be interchanged with the values for f;, fz' S fl', w/z, and u/x,
when S§; and S are replaced by 1 — S; and 1 — Sy, respectively. Thus,
only values for §; < 0.5, S, > 0.5 are reported. S; =0, S; = 1.0 is the
planar (two-dimensional) case, while S; = 0.5 = S; is the axisymmet-
ric case. Note that for §; > 1 or S, > 1 (which imply S, <0 or §; <0,
respectively), there would be incoming streams from two directions.
One incoming stream would have a prescribed velocity profile in
the viscous layer determined as a local exact solution to the Navier-
Stokes conditional on matching the profile determined by upstream
conditions for the flow in that direction; this situation is too highly
contrived and is not considered here. Thus, S; and S, are always each
non-negative and bounded above by the unity value in our consid-
erations here. The figures show results for three strain rates: S; = 0
(planar case), S; = 0.25 (3D strain), and S; = 0.5 (axisymmetric
case).

The results for the three-dimensional case, exemplified here by
Si = 0.25, lie between the results for the planar case (S; = 0) and the
axisymmetric case (S; = 0.5). The strain rate has no noticeable affect
on f; which applies to the direction with the greater positive normal
strain rate and a slight effect on f{ for the lower strained direction.
Consistently, there is little effect of strain rate on f; and f;. The term
Sia[h - (f{,)?*] in Eq. is too small to create a substantial effect;
it is found to be typically two orders of magnitude smaller than the
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fi2f{5 term. The nondimensional enthalpy and the nondimensional
velocity component v in the counterflow direction show no signifi-
cant effect from the distribution of the transverse normal strain rate.
The dimensional velocity component in the counterflow direction
would scale with the square root of the dimensional strain rate. The
values of u/x and w/z do depend strongly on the nondimensional
strain rate in their respective directions with a direct proportion.
The dimensional values u*/x* and w*/z* would then scale with the

ARTICLE scitation.org/journal/phf

dimensional strain rate in the y-direction. The influence of Pr is
shown in Fig. 4. As expected, an increase in the value of Pr causes
a larger gradient for the enthalpy variation. Interestingly, a similar
steepening is caused for f, f;, u/x, and w/z. Little effect is seen for the
v component of velocity. The variation of 1/p_ oo = h/heo is described
in Fig. 5. Since the boundary conditions for A, fi, and f, at # = —co
are substantially affected, there are strong consequences for the solu-
tions, especially for negative 7. The consequences are focused there

1 : 1
—Pr=0.7 — pr=07
09 —pr= 1 091
Pr=1.0 / — pr=10
Pr=1.3
0.8
071
0.6
0.5 — :
-4 2 0 2 4 2 4
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027
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< 0.181 , FIG. 4. Solutions for counterflow with
various Prandtl numbers. Sy = 0.25;
| 0.16 f 1 S7 = 0.75; h— oo/heo = 0.25.
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since f1(0) = £2(0) = 0 and f{ (c0) = f;(c0) = 1 are maintained for 4pu d*H 4d(pu)1dH
1l th h hat the density weighting for the variabl PEZ s+ sh- ST Ry 33)
all the cases here. Note that the density weighting for the variable # 3 dip 3 dy ldy

makes the inflection stronger as the solution varies from the higher-
density, negative-7 range to the lower-density, positive-7 range. See,
for example, the curves for v vs 1. As shown in Fig. 2, pv = Sii + S2f2
is not generally linear in #. Hence, the solution for scalars obtained
from diffusive-advective equations such as Eq. (32) will not yield
error functions as commonly found with a constant-density assump-
tion.” Equation (19) gives such an example of the constant-density
assumption.

In related fashion to the incompressible counterflow, the
variable-density results here for the velocity fields can in principle
be extended to the case where two streams are incoming (say, in the
yand x directions) and only one (say, in the z direction) is outgoing;
i.e, S1 <0butS; + S, > 0. However, now u and w do vary with y; so,
the inflow velocity conditions as well as the scalar variable conditions
are not plausible.

IV. DIFFUSION FLAME WITH 3D STRAIN

For the diffusion flame in the counterflow configuration,
Egs. (8), (10), (11), (14), (27), and (28) still apply. With Le = 1 and
Pr = 3/4 in the steady state, H from Eq. (6) is governed by the same
operator appearing in Eq. (33). Consequently,

In the above energy equation, we have retained the y-
component of kinetic energy per unit mass in H. However, an order
of magnitude analysis indicates that it can be neglected in practical
situations. Specifically, for a practical fluid at moderate tempera-
ture, a value of v** of O(10° m/s) or greater is required for the
kinetic energy to be at least one percent of the sensible enthalpy.
Then, the viscous-layer thickness 6* = O(10%2/(S{ + S5)) and
also 8** = O(u*/[p* (ST + S3)]) from the advective-diffusive bal-
ance of the governing equations. With practical values of y* and
p*, the strain rate S} + S5 will reach O(107/s) or greater. This is
much too large to allow chemical reaction and to hold a flame.
So, here in this subsection, we redefine H = h + ZﬁzlYmhf,m
neglecting the kinetic energy. Then, no assumption about Pr is
made.

In general, each of the species equations must be solved. How-
ever, for the special case of a one-step chemical reaction, each species
is consumed or produced at a rate in direct proportion to the rate
of some other species that is produced or consumed. Therefore, the
steady-state version of Eq. (5) with Le = 1 can be written as

4¥n d(Pﬂdﬁ

Pr dn

P ) = Gm = vmor, m=1,2,...,N, (34)
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where v,, is a stoichiometric constant. Then, conserved scalars
am = Ym — Y will satisfy

Pay

For the case of a simple diffusion flame with Yr and Yo repre-
senting the mass fractions of fuel and oxidizer, the conserved scalar
is @« = Yr — vYo. The far incoming stream on one side (positive y
and #) has Yr = 1, while the other far incoming stream (negative y
and #) has Yo = 1. For a rapid reaction rate, a thin flame occurs and
can be assumed to have zero thickness. The thin flame is positioned
at the # value where « = 0. At the # (or y) position where « = 0, the
magnitude of the local value of pva — (pu/Pr)da/dy gives the burn-
ing rate (mass flux per area). It is the sum of transport into the thin
flame of fuel vapor by advection and diffusion.

In Eq. , realize that the nondimensional reaction rate w;
becomes very small when the dimensional strain rate is much greater
than the dimensional reaction rate. This can cause extinction of a
flame due to the stretching effect. Extinction will not be examined
here.

Let us examine the special case where py = 1 and Le = 1.
We d~eﬁne the Shvab Zel’dovich variables « = Yr — vYo and
B = h+vYoQ, where Q is the fuel heating value normalized by
h*(c0). Assummg that a thin flame results where Yr = 0, Yo = 0,
one can write i = f + minimum(0, Qa). Then, Egs. and
yield

7+ (Sifi+ SR+ Sifh

£+ (Sifi+Safo)fy" + Safh
(X" + PT(Slfl + Szfz)(xl = 0,

daw d (pudamy _
(E 7 )_o, m=2,...,N. (35)

-(f)’1=0,
-(£)1=0,

B +Pr(Sifi +$:2)B" = 0,
fl(00) =fi(00) = 1, fi(=00) = fi(~00) =
£1(0) =£(0) =0,

a(oc0) =1, a(-o0) =-v,

B(o0) = 1, /3(—00):%+VQ:%+VQ (36)

1
VP’

In the above relations, the required constants are $1,S, = 1 - S,
P-co> Vs Q, Pr.

-8 give the computational results for Q = 10, v = 0.25,
and various values of Sy, Sy, Pr, and p_ ... The solutions for the con-
served scalars & and f3 and the velocity component v are monotonic.
However, the enthalpy / peaks at the reaction zone and all of the
velocity components u, v, and w have overshoots in the low-density
region around the reaction zone. Since the Burke-Schumann limit
of the infinite reaction rate is employed, the reaction zone has zero
thickness resulting in a cusped shape with a discontinuity of the first
derivative for . The rate of strain has modest affect on the scalar
fields and v. Significant influence is seen on the u and w velocity
components which each increases with normal strain values for their
respective direction. Unlike the nonreacting counterflow, the term
Sia[h - (f{,)*] in Eq. is large for the reacting flow; it is found
to be of the same order of magnitude as the fi,f/} term. Again, the
results are readily extended since the values for u/x and w/z can be
interchanged with the values for w/z and u/x when S; and S, are
replaced by 1 — S; and 1 — S, respectively.

scitation.org/journal/phf

The results for the scalar properties have increasing gradients
as Pr increases. In , the domain of high temperature and low
density is narrowed in # space as Pr increases because scalar gradi-
ents increase. Thereby, densities in the low-density region increase
causing the domain width in y space to narrow even more as Pr
increases. As a consequence of the increase in density, the magni-
tude of the velocity overshoot is decreased as Pr increases.
shows that an increase in ambient temperature leads, as expected,
to higher peak values of temperature and enthalpy and to a greater
velocity overshoot for all components.

The mixture fraction is commonly defined as Z = (& — a0 )/
(oo — 0—oo). For pure fuel at +oco and pure oxidizer at —oo, we
have Z = (YF — vY0 + vY0,-00)/(YF,00 + ¥Y0,-00). Then, Z is a
conserved scalar that varies monotonically from 0 at minus infin-
ity to 1 at plus infinity. It is governed by the homogeneous forms of
Eq. (5) for the unsteady state and Eq. in the steady state. It has
the steady solution Z = J(#)/](c0) where

1= 7 s+ s
J(n) = [W e_’(”)dﬂ'- (37)

If f = Sif1 + Saf 2 were linear in #, J(1) becomes an error function.
However, whenever density varies across the counterflow, a linear
behavior cannot occur.

Bilger™ has emphasized the use of element-based mass frac-
tions which become conserved scalars because chemistry does not
destroy atoms but only changes molecules. This allows us to consider
general chemical kinetics without the use of the one-step assump-
tion. Define the element mass fraction for the atom identified by
integer k as Yy = Zzzlam,k Y Wi/ W, where am i, Wy, and W, are
the integer number of k atoms in molecule m, the atomic weight of k,
and the molecular weight of m, respectively. Then, Yy is a conserved
scalar satisfying the homogeneous forms of the differential equations
given by Egs. (5) and for the unsteady and steady states, respec-
tively. Defining Z = (Y — Yi,—c0)/(Yi,00 — Yi,— o), it satisfies these
equations with Z varying from 0 to 1. For any k, the steady-state
solution is again Z = J(#)/]J(o0).

In standard fashion,” the independent variables f and y can be
replaced by 7 = t and Z(y, t) in Eq. (5), respectively. The result is

Yy Y .
W—Z}( 072 +Cl)m—0, m—1,2, ...... ,N,
D;8Z\2 D 0Z\2 pue M
R (e
2\ 9y 2 \oy 2 J?(o0)

where y is commonly named the scalar dissipation rate. However,
for laminar flows, it is better described as a measure of the strain
rate. In Eq. , 7(Z) = J™(Z] (c0)) must be substituted where J™
is the inverse function of J which must be determined numerically
or approximated. In a special case” where f; and f, are linear in
1 obtained through a constant-density assumption, J becomes an
error function because the velocity component v becomes linear in
7 (and in y). Results for v in R ,and show substan-
tial nonlinearity in v; in fact, a nonmonotonic character exists. pv
is also nonlinear in 7. The error function commonly appears in the
counterflow-flame literature; it results because dv/dy becomes a neg-
ative constant based on the constant-density assumption. The cited
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subfigures not only show nonlinearity but, in addition, a change of
sign for dv/dn (and consequently for dv/dy). The constant-density
assumption and the error-function results should not be used if
accuracy is paramount.

In the steady state, the reaction rate in Eq. (38) is determined
from the mass fractions using the known linear relations among
temperature (from enthalpy for constant c,), mass fractions, and the
conserved scalars Z, «, and 3. So, a solution can be found in Z-space.

For the steady state with fast chemical kinetics, @, (Z) will have a
significant value within a narrow region in Z-space around the sto-
ichiometric value. On both sides of that narrow region, Y, will be
linear in Z.

Streamline shapes are especially interesting here because of
both the unequal strain rates in the x and z directions and the flow
expansion caused by heating from the combustion process. Given
an initial point x,, y,, and z, for a particle, the particle path (i.e., the
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streamline in a steady flow) can be obtained through integration of
the following ordinary differential equations:

dx u

dc_u__ Sfix Ay 1 ode | Sifiz
dn pv o Sth+Sf dpop U odp Sifi+Sf
Clearly, the numerical solution following separation of variables is
straightforward. Let us examine the case of Figs. 6 and 8 where
S1 =025, 8, =0.75, Pr = 1.0, and h_oo = hoo. Realize as shown
by Fig. 8(c) that heat release and enthalpy are maximum in the

(39)

region of negative # within the upward flow region. Therefore, a den-
sity minimum and local maxima of the velocity components occur
there.

Figure 9(a) shows that the burning region with the local den-
sity minimum experiences larger changes in y for a given change in
1. Subsequently, we see in the streamline projections of Figs. 9(b)
and 9(c) that streamlines in the negative-y upward flow region are
stretched vertically more than in the downward flow. The stream-
line projections are the same for any x, y plane; that is, they do
not depend on the z value. Likewise, the streamline projection
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onto any the y, z plane is identical and without x dependence. From Eq. (39), we can write
However, the streamline projection onto an x, z plane will vary ,
depending on the value of y (or equivalently #). The effects of dz “W_a (’1)5 A= Safs (40)
different ambient temperatures and density for the two opposing dx u u Siff”

streams, obviously, will have an impact on the variations of stream-
line projections onto the x-z plane for both reacting and nonre-
acting counterflows. Also, it will affect wall-stagnation flows where
wall temperature and ambient temperature differ, causing density
gradients.

This will yield a power-law streamline projection z/z, = (x/x,)*P.
The projections in the x, z plane will have symmetries at about
both the x axis and the z axis. x and y will maintain the same sign
along the streamline as x, and z,, respectively; i.e., the streamline will
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(b)Streamline projection on any = — y plane.

FIG. 9. Selected streamline projections.
S1=0.25,S; =0.75; Pr=1.0; h— oo /hoo
=1.0.

3.5

341

(c)Streamline projection on any z — y plane.

not cross a symmetry plane at x = 0 or z = 0. As shown in Fig. 9(d),
A > 1 in this case with a peak in the hot, low-density zone. z/x
= tan 0 where 8 is the angle between the radial vector from the origin
of the x, z plane and the positive x axis. dz/dx = tan ¢ where ¢ is the
angle between the velocity vector projected onto the x, z plane and
the positive x-axis. So, in this example, tan € = Atan 6 > tan 6 and
the flow vector is turned more toward the direction of the greater
strain rate, i.e., the z direction here. (The inequality does not apply at
0 =0, 1/2, m, or 371/2.) In the hot zone, A has a larger value resulting
in more turning there. In a constant-density case, A will be constant
with y; so, the streamline projection becomes identical for any x-z
plane.

V. 3D WALL STAGNATION-POINT FLOW

For the wall stagnation flow, Egs. (8), (10), (11), (27), and (28)
still apply. The domain now is reduced to 0 < # < co. The boundary
conditions become

fi(e0) =fi(e0) =1, fi(0) =£(0) =0, fi(0) =£2(0) =0,
’U(OO) = —(Sl + Sz)l’] = —(Sl + Sz)y, ’U(O) =0,

h(o0) = hoo,  h(0) = hu. (41)
The solutions for v and p remain in the same form as given by

Egs. (8) and (27). While the forms for counterflow and wall stagna-
tion flow are the same or similar, the changes in boundary conditions

(A ()

for f; and f> due to the no-slip wall will affect the solutions. A, is the
gas enthalpy at the wall.

If p=1, 4 =1, and 5 = y, we may obtain the solutions for
the incompressible case. Howarth'~ has provided the incompress-
ible steady solutions for the continuity and momentum equations
but not for the energy equation.

Let us first examine the variable-density case where pu = 1.
Then, the equations become

R+ (St + SR+ Silh - ()]
A+ S+ AR +S[h- (£)’]
B’ + Pr(Sifi + S2f0)H =0,

fi(e0) =fi(e0) =1, f{(0) =f(0) =0,

f1(0) = £2(0) = 0, h(c0) =1, h(0) = hu. (42)

0,

0,

In the above relation, i(5) = h* (1) /h* (o) and the required con-
stants are $1,S; = 1 — Sy, /i, and Pr. In the incompressible case, h
in the first two ODEs above is replaced by 1, creating now only a
one-way coupling with the third ODE for h.

Figures 10-12 give the computational wall-stagnation-flow
results for various values of S, Sz, Pr, and py = heo/hw. Again, the
rate of strain has modest affect on the scalar fields and v. Signifi-
cant influence is seen on the u and w velocity components which
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FIG. 10. Solutions for nondimensional
velocities and enthalpy. Wall stagnation
flow with various strain rate distributions.
Pr=1.0and h/heo =0.25.

FIG. 11. Solutions for nondimensional
velocities and enthalpy. Wall stagna-
tion flow with various Prandtl numbers.
S1=0.25; S; =0.75; hyy/hoo = 0.25.
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each increases with normal strain values for their respective direc-
tion. The term Si,[h — (f{,)?] in Eq. (31) can be large, especially
near the wall. Still again, the results are readily extended since the
values for u/x, and w/z can be interchanged with the values for w/z
and u/x when S; and S, are replaced by 1 — S; and 1 — S,, respec-
tively. For the case of a hot wall, Fig. 12 shows that all of the velocity
components u, v, and w have overshoots in the low-density region
near that hot wall.

In similar fashion to the variable-density counterflow case, the
extension of the results to a case with inflow from both the y and x
(or 2) directions would not describe a plausible flow configuration.

VI. CONCLUSIONS

Viscous counterflows and wall stagnation flows are analyzed
with three-dimensional normal strain rates. Reacting (i.e., with dif-
fusion flames) and nonreacting counterflows are examined. Stagna-
tion flows with hot and cold walls are also studied. A similar system
of the Navier-Stokes equations coupled with equations for scalar
transport is developed, and exact solutions are obtained both inside
and outside the viscous layer; i.e., the boundary-layer approxima-
tion is not required. The second derivatives of velocity go to zero
outside of the viscous layer although first derivatives remain and
asymptote to constants. Consequently, viscous force (per volume)
asymptotes to zero and the Navier-Stokes equations asymptote to
the Euler equations. Variable density, temperature, and composition
are considered. Results for planar flows and axisymmetric flows are
obtained as limits here. Velocity components u, v, and w are each

odd functions of x, y, and z, respectively. The scalar functions are
even functions of both x and z. Terms of O(x?, xz, Z%) are neglected.
v(y) is determined for the infinite range of y.

For the steady and unsteady incompressible counterflows, ana-
Iytical solutions are obtained for the flow field and the scalar fields
subject to heat and mass transfer. In steady, variable-density config-
urations (both reacting and nonreacting), a set of ODEs govern the
two transverse velocity profiles. Each of the three velocity compo-
nents as well as the diffusion rates for mass, momentum, and energy
depends on the two normal strain rates parallel to the counterflow
interface or the wall and thereby not merely on the sum of those two
strain rates. The effect of strain distribution is generally greater on
the transverse velocity components, u and w, than on the incoming
velocity component, v, and the scalar variables. The incompressible
counterflow is the only case where the diffusion rate and the veloc-
ity component in the counterflow direction are not affected by the
distribution of the strain rate between the two transverse directions
and depend only on the sum of those two strain rates. The velocity
profiles and the scalar profiles are shown to depend on ambient tem-
perature (or equivalently density) values and the Prandtl number as
well as the strain rates.

The results obtained here for both stagnation-point flows and
counterflows agree exactly in the limits of two-dimensional flows
(planar and axisymmetric) with the well known literature."*'*'*'"""?
It also agrees with Howarth’s results for three-dimensional, incom-
pressible, steady wall-stagnation flow."”

The cited two-dimensional solutions and this new three-
dimensional solution are exact solutions to the Navier-Stokes
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equations for a region neighboring the stagnation point. For a flat
interface of the opposing streams in counterflow or a flat wall in
wall-stagnation flow, that neighborhood becomes infinite in size.
Essentially, we have an acceptable solution if the ratio of the neigh-
borhood size to the interface radius is much smaller than unity. Of
course, improvements in the presentation here can be made by better
representations of transport and physical property values, chemical
kinetic descriptions, and in some cases equations of state.

For thin diffusion flames, the location, burning rate, and
peak temperature are readily obtained in the infinite-kinetics limit.
Important corrections are shown of the existing literature which
is based on a constant-density assumption. For counterflows with
flames and stagnation layers with hot walls, velocity overshoots
are seen in the viscous layer for all three velocity components.
The overshoot of velocity v in the incoming direction is driven by
hot-gas expansion through the continuity equation. Then, for the
turning flow, overshoots in the « and w velocity components also
result. These overshoots also occur in the axisymmetric and pla-
nar limits although they were not recognized in prior studies on
gaseous combustion. The overshoot in the v velocity was
presented for spray flames,” and, to a small extent, velocity over-
shoot appeared for combustion at supercritical pressure,” how-
ever without much discussion and no examination of the transverse
velocity components. Here, solutions are found for a full range of
the distribution of normal strain rates between the two transverse
directions, various Prandtl number values, and various ambient (or
wall) temperatures. The velocity overshoots for all three compo-
nents show that large velocity gradients and vorticity of opposite
directions are developing. These occurrences can have significant
consequence for hydrodynamic stability and the development of tur-
bulence. Also, it can add to the effect of flame stretch and subsequent
extinction.

In steady counterflow and wall-stagnation flow, streamline pro-
jections on the x, y plane are the same for any z value. Similarly,
projections on the y, z plane are the same for any x value. However,
with variable density, projections onto an x, z plane will vary with
¥. A local reduction in density results in a local increase in the local
strain-rate ratio beyond the ambient strain-rate ratio, thereby turn-
ing the flow vector locally even more in the direction of the greater
strain rate.

Although viscous force goes to zero asymptotically with
increasing distance from the wall or interface layer, the viscous
dissipation rate asymptotes to a constant value.
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