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Understanding liquid-jet atomization cascades
via vortex dynamics
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Temporal instabilities of a planar liquid jet are studied using direct numerical
simulation (DNS) of the incompressible Navier–Stokes equations with level-set
(LS) and volume-of-fluid (VoF) surface tracking methods. λ2 contours are used to
relate the vortex dynamics to the surface dynamics at different stages of the jet
breakup – namely, lobe formation, lobe perforation, ligament formation, stretching
and tearing. Three distinct breakup mechanisms are identified in the primary breakup,
which are well categorized on the parameter space of gas Weber number (Weg)
versus liquid Reynolds number (Rel). These mechanisms are analysed here from a
vortex dynamics perspective. Vortex dynamics explains the hairpin formation, and the
interaction between the hairpins and the Kelvin–Helmholtz (KH) roller explains the
perforation of the lobes, which is attributed to the streamwise overlapping of two
oppositely oriented hairpin vortices on top and bottom of the lobe. The formation
of corrugations on the lobe front edge at high Rel is also related to the location
and structure of the hairpins with respect to the KH vortex. The lobe perforation
and corrugation formation are inhibited at low Rel and low Weg due to the high
surface tension and viscous forces, which damp the small-scale corrugations and
resist hole formation. Streamwise vorticity generation – resulting in three-dimensional
instabilities – is mainly caused by vortex stretching and baroclinic torque at high
and low density ratios, respectively. Generation of streamwise vortices and their
interaction with spanwise vortices produce the liquid structures seen at various flow
conditions. Understanding the liquid sheet breakup and the related vortex dynamics
are crucial for controlling the droplet-size distribution in primary atomization.

Key words: gas/liquid flow, vortex dynamics, vortex interactions

1. Introduction
Earlier computational works on the breakup of liquid streams at higher Weber

number (We) and Reynolds number (Re) (i.e. in the atomization range) focused on
the surface dynamics using either volume-of-fluid (VoF) or level-set (LS) methods
(Desjardins & Pitsch 2010; Shinjo & Umemura 2010; Herrmann 2011). More recently,
Jarrahbashi & Sirignano (2014) and Jarrahbashi et al. (2016) numerically simulated

† Email address for correspondence: sirignan@uci.edu
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the temporal behaviour of round jets and Zandian, Sirignano & Hussain (2017)
computed the temporal behaviour of planar jets with additional data analysis that
related the vorticity dynamics to the surface dynamics. Zandian et al. (2017) presented
several significant accomplishments: (i) three breakup mechanisms were identified and
their zones of occurrence were specified on the gas-phase Weber number (Weg) versus
liquid-phase Reynolds number (Rel) map; (ii) the most important actions in each of
the three breakup domains were explained; (iii) the effects of density ratio, viscosity
ratio and sheet thickness on the breakup domains were described; (iv) characteristic
times for each of these breakup domains were correlated with key parameters; and
(v) the same breakup domains were shown to apply for round jets and planar jets
with a very similar Weg versus Rel map.

In recent years, a number of analyses for spatially developing instability and
breakup of liquid streams have appeared. They do add interesting and useful
information; however, all of those analyses are at relatively low values of Weber
number (Weg < 100). That is, although some of those works are described as
‘atomization’ studies, they all fit better under the classical characterization of
‘wind-induced capillary instabilities’ given by Ohnesorge (1936) and Reitz & Bracco
(1986). Ling et al. (2017) use three-dimensional (3D) direct numerical simulation
(DNS) and resolve the smaller scales; they treat air-assisted injection of a planar
sheet and give detailed discussion about the challenge of numerical accuracy. While
they mention briefly vortex dynamics and the use of the λ2 method, little detail
is given. Zuzio, Estivalèzes & Dipierro (2016) include ‘preliminary’ results for
sheet breakup in their 3D DNS analysis. The other papers give analyses that are
linear (Otto, Rossi & Boeck 2013), two-dimensional (2D) inviscid (Matas, Marty &
Cartellier 2011), 2D (Fuster et al. 2013; Agbaglah, Chiodi & Desjardins 2017), or
3D large-eddy simulations (Agbaglah et al. 2017). Of course, these methods cannot
resolve the smaller structures that form during the cascade process of the breakup.
An analysis with spatial development offers some advantage with practical realism
over temporal analysis. At the same time, the additional constraints given by the
boundary conditions remove generality in the delineation of the important relevant
physics. For these reasons, we follow the path with temporal-instability analysis
in the classical atomization (high-Weg range) provided by Jarrahbashi & Sirignano
(2014), Jarrahbashi et al. (2016), and Zandian et al. (2017). The goal is to reveal
and interpret the physics in the cascade process known as atomization. Note that
some spatial development is provided when the temporal analysis covers a domain
that is several wavelengths in size. Using linear theory, relations between spatially
developing results and temporal results have been demonstrated for single-phase flows
(Gaster 1962) and two-phase flows (Fuster et al. 2013).

Jarrahbashi et al. (2016) showed that important spray characteristics, e.g. droplet
size and spray angle, differed in different ranges of We, Re and density ratio.
Therefore, further studies of the breakup mechanisms are needed to better understand
the causes of these differences. Consequently, there are unresolved questions to be
addressed in this paper: what are the details of the liquid dynamics in each breakup
domain? What causes the difference in the breakup cascade? What roles do surface
tension, liquid viscosity and gas density (i.e. pressure) play? How do the roles of
streamwise vorticity (i.e. hairpin vortices) differ in the three breakup domains? How
does the behaviour of a jet flow into an alike fluid (e.g. water into water or air into
air) compare with liquid-jet flow into gas? The answers to these questions would be
crucial in understanding and controlling the ligament and droplet-size distribution in
the primary atomization of liquid jets.
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Vortex dynamics concepts can shed further light on surface deformation of a liquid
jet in the primary atomization process – a cascade involving the formation of smaller
and smaller liquid structures. The Kelvin–Helmholtz (KH) instability at the liquid–gas
interface promotes the growth of spanwise vorticity waves forming coherent vortices.
These vortices evolve into hairpins with counter-rotating streamwise legs (Bernal &
Roshko 1986). The streamwise and spanwise vortical waves combine to produce
different surface structures, e.g. lobes, bridges and ligaments, which eventually break
up into droplets. The link between the vortex dynamics and surface dynamics in
primary atomization is important, but rarely explored and poorly understood; hence
this study is an attempt to fill that gap.

There have been several studies of the jet instabilities from the vortex dynamics
perspective. Most of them, however, do not address density and viscosity disconti-
nuities. These studies have mainly focused on understanding and relating vortex
stretching (Pope 1978), vortex tilting (Lasheras & Choi 1988) and baroclinic effects
(Schowalter, Van Atta & Lasheras 1994) to the 3D liquid-jet instabilities. Earlier
experimental studies in this field (Widnall & Sullivan 1973; Widnall, Bliss & Tsai
1974; Breidenthal 1981; Jimenez 1983; Bernal & Roshko 1986; Lasheras & Choi
1988; Liepmann & Gharib 1992; Schowalter et al. 1994) have been followed and
reproduced in more detail by numerical simulations (Ashurst & Meiburg 1988;
Martin & Meiburg 1991; Comte, Lesieur & Lamballais 1992; Brancher, Chomaz
& Huerre 1994; Collis et al. 1994; Schoppa, Hussain & Metcalfe 1995; Danaila,
Dušek & Anselmet 1997; Shinjo & Umemura 2010; Jarrahbashi & Sirignano 2014;
Jarrahbashi et al. 2016). The vorticity dynamics of planar mixing layers and jets
flowing into like-density fluids have been reviewed by Jarrahbashi & Sirignano
(2014) and Jarrahbashi et al. (2016).

In the first studies of the role of streamwise vorticity in round liquid jets flowing
into a gas, Jarrahbashi & Sirignano (2014) and Jarrahbashi et al. (2016) showed
how lobe and ligament formation mechanisms relate to augmentation of streamwise
vorticity. They also showed that a natural mode number of lobes exists for a given
configuration and cannot be changed by weak forcing (Jarrahbashi & Sirignano 2014);
however, strong forcing can produce lobes of different mode numbers.

Empirical evidence (Lefebvre 1989) has long been available that spray character
differs significantly for differing values of Re and We. Jarrahbashi et al. (2016)
showed that different breakup mechanisms result in differing spray angles and
droplet-size distributions. Thus, we see that, for control of spray character, it is
very valuable to understand the details of the cascade processes for each of the
identified atomization domains. Control and optimization, although not addressed in
this study, motivate the detailed exploration and the behavioural characterizations
reported here.

1.1. Liquid-jet breakup domains
Jarrahbashi et al. (2016) found three distinct physical domains in round liquid jets,
including hole formation and lobe stretching, and explained surface wave dynamics,
vortex dynamics and their interactions. The perforations were correlated with the fluid
motion induced by the hairpin and helical vortices. They also found that the hole-
formation process is dominated by inertia rather than capillary forces, and the hole
merging was related to the slower development of hairpin vortices and lobe shape.

Zandian et al. (2017) identified three mechanisms for liquid sheet surface
deformation and breakup, which were well categorized on a gas Weber number
(Weg) versus liquid Reynolds number (Rel) map, shown in figure 1. The red symbols
on this diagram indicate the results for a lower density ratio of 0.05, not present in
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FIGURE 1. (Colour online) The breakup characteristics based on Weg and Rel, showing
the LoLiD mechanism (Atomization Domain I) denoted by diamonds, the LoHBrLiD
mechanism (Atomization Domain II) denoted by circles, the LoCLiD mechanism
(Atomization Domain III) denoted by squares, and the transitional region denoted by
triangles. The cases with density ratio of 0.1 (ρ̂ = 0.1) are shaded. The ρ̂ = 0.1 and
ρ̂= 0.5 cases that overlap at the same point on this diagram are noted. – · – · –, transitional
boundary at low Rel; – – –, transitional boundary at high Rel (Zandian et al. 2017). The
red symbols denote the cases for lower ρ̂ = 0.05, added to the original diagram.

the original diagram of Zandian et al. (2017), but recently added following our new
data. The liquid structures seen in either one of these breakup domains are sketched in
figure 2, where the evolution of a liquid lobe is shown from a top view. At high Rel,
the liquid sheet breakup characteristics change based on a modified Ohnesorge number,
Ohm ≡

√
Weg/Rel, as follows: (i) at high Ohm and high Weg, the lobes become thin

and puncture, creating holes and bridges. Bridges break as perforations expand and
create ligaments. Ligaments then stretch and break into droplets by capillary action.
This domain is indicated as Atomization Domain II in figure 1, and its mechanism
was called LoHBrLiD based on the cascade of structures seen in this domain (Lo≡
Lobe, H ≡ Hole, Br ≡ Bridge, Li ≡ Ligament, and D ≡ Droplet); and (ii) at low
Ohm and high Rel, holes are not seen at early times; instead, many corrugations form
on the lobe front edge and stretch into ligaments. This mechanism is called LoCLiD
(C≡ Corrugation) and occurs in Atomization Domain III (see figure 1), and results in
ligaments and droplets without the hole and bridge formations. The third mechanism
follows a LoLiD process and occurs at low Rel and low Weg (Atomization Domain I),
but with some difference in details from the LoCLiD process. The main difference
between the two ligament formation mechanisms at high and low Rel values is that at
higher Rel the lobes become corrugated before stretching into ligaments. Hence, each
lobe may produce multiple ligaments, which are typically thinner and shorter than
those at lower Rel. At low Rel, on the other hand, because of the higher viscosity,
the entire lobe stretches into one thick, usually long ligament.
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FIGURE 2. Cascade of structures for the LoLiD, LoCLiD and LoHBrLiD processes; sketch
showing top view of a liquid lobe undergoing these processes. The gas flows on top of
these structures from left to right, and time increases to the right.

There is also a transitional region in the Weg–Rel map, in which both lobe/ligament
stretching and hole-formation mechanisms occur simultaneously. The transitional
region at low Rel follows a hyperbolic relation, i.e. Weg = A/Rel, shown by the
dash-dotted line in figure 1; while in the high Rel limit, it follows a parabolic
relation, i.e. Weg = B2Re2

l , shown by the dashed line in figure 1. The constant B is a
critical Ohm at high Rel, B≈ 0.021 (Zandian et al. 2017).

1.2. Objectives
Our objectives for the planar jet are to (i) explain the mechanisms of surface
deformation and breakup in the three domains introduced by Zandian et al. (2017)
using more sophisticated data analysis for the vortex dynamics (i.e. the λ2 method);
(ii) determine the importance of streamwise vorticity (i.e. hairpin vortices) in the
breakup mechanisms; (iii) identify the generation mechanisms for the streamwise
vorticity; and (iv) learn the differences in generation and role of the spanwise and
streamwise vorticity at low and high density ratios.

In § 2, the numerical methods and the most important flow parameters are presented
along with the calculations for vortex identification. Section 3 is devoted to our
numerical results and their analyses. The vortex structures are tracked in time to
explain the liquid structures in the three breakup mechanisms. Hole formation,
corrugation formation and lobe/ligament stretching are analysed in § 3.2, § 3.3 and
§ 3.4, respectively. Streamwise vorticity generation is studied in detail in § 3.5. The
similarities between the vortex dynamics of planar and circular jets are discussed in
§ 3.6. Finally, our findings and conclusions are summarized in § 4.
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2. Numerical modelling
2.1. Governing equations

The governing equations are the continuity, momentum and LS/VoF equations. Since
both the gas and the liquid are incompressible, the continuity equation is

∇ · u= 0, (2.1)

where u is the velocity vector. The momentum equation, including the viscous
diffusion and surface tension forces and neglecting the gravitational force, is

∂(ρu)
∂t
+∇ · (ρuu)=−∇p+∇ · (2µD)− σκδ(d)n, (2.2)

where p, ρ and µ are the pressure, density and dynamic viscosity of the fluid,
respectively. D is the rate of deformation tensor,

D = 1
2

[
(∇u)+ (∇u)T

]
. (2.3)

The last term in (2.2) is the surface tension force per unit volume F=−σκδ(d)n;
where σ is the surface tension coefficient, κ is the surface curvature, δ(d) is the Dirac
delta function, d is the distance from the interface, and n is the unit vector normal to
the liquid–gas interface.

The LS function φ is defined as a smooth distance function, which enables
evaluation of the density, viscosity and surface tension at any distance from the
interface in either gas or liquid zones. This method was developed by Osher and his
coworkers (Zhao et al. 1996; Sussman et al. 1998; Osher & Fedkiw 2001). In this
algorithm, the interface Γ is the zero level set of φ,

Γ = {x|φ(x, t)= 0} . (2.4)

φ < 0 in the liquid region and φ > 0 in the gas region are taken. u is continuous
across the interface. Since the interface moves with the fluid particles, the evolution
of φ is then given by

∂φ

∂t
+ u · ∇φ = 0, (2.5)

which is called the LS equation. If the initial distribution of the level set is a signed
distance function, after a finite time of being convected by a non-uniform velocity
field, it will not remain a distance function. Therefore, the LS function should be
re-initialized in such a way that it will be a distance function, without changing the
zero level set (position of the interface). This is achieved by solving the following
differential equation (Sussman et al. 1998);

∂d
∂τ
= sign(φ)(1− |∇d|), (2.6)

with the initial condition

d(x, 0)= φ0(x), (2.7)

where τ is a pseudotime. The steady solutions of (2.6) are distance functions.
Furthermore, since sign(0)= 0, then d(x, t) has the same zero level set as φ(x).
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Since the density and viscosity are constant in each fluid, they take on two different
values depending on the sign of φ; we can write

ρ(φ)= ρl + (ρg − ρl)H(φ), (2.8)

and

µ(φ)=µl + (µg −µl)H(φ), (2.9)

where H(φ) is a smoothed Heaviside function, and the subscripts g and l refer to gas
and liquid, respectively. Using these expressions, the governing equation for the fluid
velocity u (2.2) can be written as a single equation containing both liquid and gas
properties.

At low density ratios, we use a transport equation similar to the level set (2.5) for
the volume fraction f , also called the VoF variable, in order to describe the temporal
and spatial evolution of the two-phase flow (Hirt & Nichols 1981);

∂f
∂t
+ u · ∇f = 0, (2.10)

where the VoF variable f represents the volume of (liquid phase) fluid fraction as
follows:

f (t)=

 0, outside of liquid phase
0< f < 1, at the interface

1, inside the liquid phase.
(2.11)

The normal direction of the fluid interface is found where the value of f changes
most rapidly. With this method, the free surface is not defined sharply; instead, it is
distributed over the height of the cell. Since fluid properties are required every time
step in order to solve the Navier–Stokes equations, the density and viscosity change
continuously based on (2.8) and (2.9). However, in these equations, the argument of
the Heaviside function is replaced by f , in the VoF method.

The formulation for the fully conservative momentum convection and volume
fraction transport, the momentum diffusion, and the surface tension are treated
explicitly. To ensure a sharp interface of all flow discontinuities and to suppress
numerical dissipation of the liquid phase, the interface is reconstructed at each time
step by the PLIC (piecewise linear interface calculation) method proposed by Rider
& Kothe (1998). The liquid phase is transported on the basis of its reconstructed
distribution. The capillary effects in the momentum equations are represented by a
capillary tensor as introduced by Scardovelli & Zaleski (1999).

2.2. Flow configuration
The computational domain, shown in figure 3, consists of a cube, which is discretized
into uniform-sized cells. The liquid segment, which is a sheet of thickness h (h =
50 µm for the thin sheet and 200 µm for the thick sheet in this study), is centred at
the middle of the box. The domain size in terms of the sheet thickness h is 16h ×
10h × 10h, in the x, y and z directions, respectively, for the thin sheet, and 4h ×
4h × 8h for the thick sheet. The liquid segment is surrounded by gas zones on top
and bottom. The gas moves in the positive x- (streamwise) direction, with a constant
velocity (U=100 m s−1) at the top and bottom boundaries, and its velocity diminishes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Ir

vi
ne

 L
ib

ra
ri

es
, o

n 
22

 M
ar

 2
01

8 
at

 1
5:

54
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.113
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


300 A. Zandian, W. A. Sirignano and F. Hussain

Gas
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FIGURE 3. (Colour online) The computational domain with the initial liquid and gas
zones.

to the interface velocity with a boundary layer thickness obtained from 2D full-jet
simulations. In the liquid, the velocity decays to zero at the centre of the sheet with
a hyperbolic tangent profile. For more detailed description of the initial conditions, see
figure 12 of Zandian, Sirignano & Hussain (2016).

Our study involves a temporal computational analysis with a relative velocity
between the two phases. Due to friction, the relative velocity decreases with time.
Furthermore, the domain is several wavelengths long in the streamwise direction
so that some spatial development occurs. In order to reduce the dependence of the
results on details of the boundary conditions, specific configurations (e.g. air-assist or
air-blast atomization) are avoided. However, calculations are made with the critical
non-dimensional parameters in the ranges of practical interest.

The liquid–gas interface is initially perturbed symmetrically on both sides with
a sinusoidal profile of predefined wavelength and amplitude obtained from the 2D
full-jet simulations (see Zandian et al. 2016). Two analyses without forced or initial
surface perturbations – the full-jet 2D simulations (figure 11 of Zandian et al. 2016)
and the initially non-perturbed 3D simulations (figure 13 of Zandian et al. 2016,
and figure 51 of the current article) – show KH wavelengths in the moderate range
of 80–125 µm over a wide range of Rel, Weg and ρ̂ studied here. In order to
expedite the appearance and growth of the KH waves, initial perturbations with a
wavelength of 100 µm are imposed on the interface, with a small amplitude of 4 µm.
The amplitude of the perturbations is small enough so that any other subharmonic
wavelengths would have a chance to form and grow. As shown by Jarrahbashi &
Sirignano (2014) and Zandian et al. (2017), at higher Rel and lower ρ̂, a variety of
smaller and larger wavelengths also form; at very low Weg, the waves also merge to
create longer wavelengths. Both streamwise (x-direction) and spanwise (y-direction)
perturbations are considered in this study. The amplitude of the spanwise perturbations
is reduced to 2.5 µm to let the other subharmonic waves appear naturally. At higher
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Case Rel Weg ρ̂ µ̂

D1a 320 23 000 0.1 0.002
D1b 1000 3000 0.05 0.01
D2a 5000 20 000 0.5 0.006
D2b 2500 5000 0.05 0.01
D3a 5000 7250 0.5 0.006
D3b 5000 3000 0.05 0.01

TABLE 1. The main cases studied with their dimensionless parameter values.

Rel, smaller spanwise waves (formed first as corrugations) appear superimposed on
the initial perturbations (Zandian et al. 2017). Similarly, the waves merge to create
larger waves (lobes) at lower Weg. Periodic boundary conditions for all components
of velocity as well as the LS/VoF variable are imposed on the four sides of the
computational domain; i.e. the x- and y-planes.

The most important dimensionless groups in this study are the Reynolds number
(Re), the Weber number (We), the gas-to-liquid density ratio (ρ̂) and viscosity ratio
(µ̂), as defined below. The initial KH wavelength-to-sheet-thickness ratio (Λ) is also
an important parameter that defines the relative length of the initial perturbations;

Re=
ρlUh
µl

, We=
ρlU2h
σ

, ρ̂ =
ρg

ρl
, µ̂=

µg

µl
, Λ=

λ

h
. (2.12a−e)

The sheet thickness h is considered as the characteristic length, and the relative
gas–liquid velocity U as the characteristic velocity. Theoretically, if the flow field is
infinite in the streamwise direction (as in our study), a Galilean transformation shows
that only the relative velocity between the two streams is consequential. Spatially
developing flow fields, however, are at most semi-infinite so that both velocities at
the flow-domain entry and their ratio (or their momentum ratio) are important. A wide
range of Re and We at high and low density ratios is covered in this research. The
main six cases studied in this article are presented in table 1. The cases are called in
a ‘Dnx’ format, where ‘n’ presents the Domain number (1, 2 or 3), and ‘x’ presents
the range of the case (‘a’ for high density ratio, and ‘b’ for low density ratios). Two
cases – one at high density ratio and fairly high Weg, and one at low ρ̂ and low
Weg – are studied in each domain to clearly show the effects of density ratio on the
vortex dynamics of each atomization process. The ‘b’ cases are more practical and in
the ranges usually seen in most atomization applications. The range of parameters for
other cases presented in this article is indicated in their corresponding figure captions.

2.3. Numerical methods
Direct numerical simulation (DNS) is done by using an unsteady 3D finite-volume
solver to solve the Navier–Stokes equations for the planar incompressible liquid sheet
segment (initially stagnant), which is subject to instabilities due to a gas stream that
flows past it on both sides. The LS and VoF methods are used for liquid–gas interface
tracking. The temporal deformation of the liquid–gas interface is predicted, resulting
in 3D instabilities, that can lead to ligament formation and sheet breakup. The original
code containing the LS subroutines was developed and applied by Dabiri, Sirignano
& Joseph (2007), and later by Jarrahbashi & Sirignano (2014), Jarrahbashi et al.
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(2016), and Zandian et al. (2016). Because of the weakness of the LS method in
mass conservation at low density ratios, the VoF method is used at low gas densities.

A uniform staggered grid is used with a mesh size of 2.5 µm and a time step
of 5 ns – a finer grid resolution of 1.25 µm is used for the case with higher Weg

(Weg=115 000 and Rel=320) or higher Rel (Rel=5000 and Weg=3000, 7250, 20 000,
and 36 000). The third-order-accurate QUICK scheme is used for spatial discretization
and the Crank–Nicolson scheme for time marching. The velocity–pressure coupling is
established using the SIMPLE algorithm. The initial velocity profile and some other
initial estimations, e.g. initial surface perturbation wavelength, are obtained from a 2D
planar full-jet simulation with the same schemes and methodology as those of Zandian
et al. (2016).

The grid independency tests were performed previously by Jarrahbashi & Sirignano
(2014), Jarrahbashi et al. (2016), and Zandian et al. (2016). They showed that the
errors in the size of the ligaments, penetration length of the liquid jet, and the
magnitude of the velocity computed using different mesh resolutions were within an
acceptable range. The effects of the mesh size, the thickness of the fuzzy zone
between the two phases, where properties have large gradients to approximate
the discontinuities, and mass conservation of the LS method have been previously
addressed by Jarrahbashi & Sirignano (2014). The effects of mesh resolution on the
most important flow parameters, e.g. surface structures, velocity and vorticity profiles,
are studied in detail in § 2.4. The domain-size independency was also checked in both
streamwise and spanwise directions to make sure that the resolved wavelengths were
not affected by the domain length or width. The normal dimension of the domain
was chosen such that the top and bottom boundaries remain far from the interface
at all times, so that the surface deformation is not directly affected by the boundary
conditions. In addition, accuracy tests and validation with experiments and other
numerical approaches were performed previously (Dabiri et al. 2007; Jarrahbashi &
Sirignano 2014), and will not be repeated here.

2.4. Effects of mesh resolution
The computational grid should be able to resolve well the boundary layer of the
gas and liquid near the interface in order to capture the frequency and growth of
the interfacial instabilities accurately (Fuster et al. 2013). More importantly, the
requirement for sufficient numerical resolution to compute the formation of holes
and corrugations on the lobes indeed is a stricter restriction on the mesh size in the
current study. To assess the effects of grid resolution on the numerical results of
the DNS simulation of the atomization, three grid resolutions are considered in this
section: M1, M2 and M3, with ∆= 5 µm, 2.5 µm and 1.25 µm, respectively.

Figure 4 shows the mass conservation error in different mesh resolutions. The
vertical axis measures the instantaneous volume of the liquid phase V normalized
by the initial volume of the liquid in the domain V0. The coarse grid M1 clearly
has the largest mass loss, with an error of approximately 0.5 % near the end of the
computation. The M2 and M3 grids, however, both have fair mass conservation, with
low errors of 0.15 % and < 0.1 %, respectively. The results shown in figure 4 are for
a case with ρ̂ = 0.05. At higher density ratios, the mass conservation is significantly
better.

A close-up view of the different liquid surface structures found in different
atomization domains are shown in figure 5 for different mesh resolutions of the
same cases and at the same time steps. Figure 5(a–c) shows the effects of mesh
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FIGURE 4. Mass conservation check for different mesh resolutions.
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FIGURE 5. (Colour online) Close-up view of the liquid surface structures formed at the
wave crest for different mesh resolutions. Hole formation in Domain II, for Rel = 2500
and Weg= 7250 at 90 µs (a–c); corrugation formation in Domain III, for Rel= 5000 and
Weg = 7250 (Case D3a) at 90 µs (d–f ); droplet formation in Domain II, for Rel = 2500
and Weg= 7250 at 95 µs (g–h). Comparison of the relative sizes of holes, ligaments and
droplets with the grid size for Rel = 5000 and Weg = 36 000 at 13 µs (i). ρ̂ = 0.1, µ̂=
0.0066 and Λ= 0.5 for all images.

resolution on depicting the hole formation in Domain II. Physically, holes are formed
on the liquid lobes only when the lobe thickness is very small (O(10) nm) and the
disjoining pressure becomes active (Ling et al. 2017). Here in the simulations, holes
appear when the thickness of the liquid lobe (sheet) decreases to approximately the
cell size ∆. Since mechanisms of sheet rupture, such as disjoining pressure, are
absent in the present study, and because of this numerical cutoff criterion, the initial
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perforation of the liquid sheets is highly dependent on the mesh resolution. As can
be seen in figure 5(a–c), the M1 grid does not have enough resolution to capture the
hole formation accurately. The holes form much sooner and expand much faster in
the M1 grid compared to the other two finer grids. As seen in figure 5(c), the large
perforation seen on the lobe is a result of merging of several smaller holes on the
liquid sheet, which can be captured only by a high-resolution grid such as M3. The
entire size of the hole is fairly similar for the M2 and M3 grids. The lobe rim is
much thicker for finer resolutions. Consequently, a further increase of mesh resolution
will only delay the pinch-off point but will not affect the ligaments formed from the
expansion of the holes. Hole formation and rim dynamics are well captured by the
M2 and M3 grids.

At high Rel, in Domain III of figure 1, corrugations form on the lobe rim. There are
typically three or four such small-scale corrugations (per wavelength) on the lobe rims,
each having a size (thickness) of approximately 15–25 µm. Clearly, the M1 grid does
not have enough resolution to capture these corrugations, and only the larger ligaments
are resolved (figure 5d). The M2 and M3 grids both resolve the corrugations correctly
with very similar sizes and structures (figure 5e, f ). Figure 5(g,h) compares the droplet
formation and the cascade of structures for the M2 and M3 grids. The general aspects
of the process, e.g. size and location of the lobes, ligaments, and holes and thickness
of the rims, are fairly similar for both grids. However, as described before, because of
the numerical cutoff criterion, the holes form and expand slightly sooner (<1 µs) for
the M2 grid. The size of the resolved droplets and ligaments are also slightly smaller
in the M2 grid. This is similar to what was seen by Ling et al. (2017) and Jarrahbashi
& Sirignano (2014) in their studies of the grid resolution. It is well known that the
size of corrugations and the resulting ligaments and droplets decrease as Rel and Weg
increase. In the current study, the M3 grid is used only for those higher Rel and Weg,
and for the rest of the cases the M2 grid is adequate to capture the physics of the
cascade process. As shown in figure 5(i) for a high Rel= 5000 and high Weg= 36 000,
the M3 grid resolution is fine enough to capture the smallest holes, ligaments and
droplets. The radii of curvature of the corrugations and holes and ligaments can go
down to approximately 6 µm, which can be resolved well only by the M3 grid with
∆= 1.25 µm.

Since the major part of this study is concerned with the vortex dynamics of the
cascade process, it is important that we resolve the velocity and vorticity in the gas–
liquid mixing layer correctly. A comparison of the streamwise velocity and spanwise
vorticity profiles near the wave crest at an early time (t = 10 µs) and a later time
(t= 70 µs) are shown in figure 6. These profiles are obtained at the front-most tip of
one of the lobe crests at two distinct times. All three grids resolve the gas and liquid
boundary layers correctly at early times, with the M1 profile slightly shifted towards
the sheet centre near the interface (figure 6a). The gas vorticity layer δg imposed in
this simulation is initially approximately 200 µm, and the velocity gradient, hence the
vorticity magnitude near the interface increases with time (see figure 6c). At later
times (figure 6c,d), the M1 grid fails to capture the velocity profile correctly and
is also unable to resolve the small-scale velocity fluctuations and the small vortices
near the interface. The M2 and M3 grids, however, resolve the velocity fluctuations
similarly with very little difference, and vividly portray the location and amplitude of
those fluctuations. The liquid sheet bulk velocity increases in the meantime.

In terms of calculating the vorticity, figure 6(b) shows that the magnitude of the
spanwise vorticity obtained from M1 grid is significantly lower than that of M2
and M3 even at early times. The location of the vorticity peak is also closer to
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FIGURE 6. (Colour online) The streamwise velocity profile (a,c) and the spanwise
vorticity profile (b,d) near the wave crest for Case D3a with different mesh resolutions at
an early time t= 10 µs (a,b), and at a later time t= 70 µs (c,d). The gas–liquid interface
locations are denoted by the dashed lines.

the sheet centre and inside the liquid phase because the velocity gradient and the
vorticity magnitude cannot be predicted correctly with the M1 grid. At later times
(figure 6d), this difference between the vorticity magnitudes of M1 and M2/M3
becomes even more noticeable, where the M1 grid cannot resolve the small vortices.
The M2 and M3 grids have much better consistency in resolving the number of
peaks, their locations and their magnitudes; however, the M3 grid is required for
capturing all the vortices correctly at such high Rel values. The spanwise vorticity is
not equally distributed between the two phases, and it mainly sits on the gas side
since the vorticity thickness (and the boundary layer thickness) is larger in the gas
phase compared to the liquid phase. The inclination of the vortices towards the gas
phase is more pronounced at lower density ratios (Hoepffner, Blumenthal & Zaleski
2011).

Experiments and simulations show that as KH waves amplify, the convective
velocity of the waves becomes very close to the Dimotakis speed (Dimotakis
1986) defined as UD = (Ul +

√
ρ̂Ug)/(1 +

√
ρ̂). Considering the case shown in

figure 6(a) with ρ̂=0.5 and Ul=20 m s−1, the Dimotakis speed gives UD≈53 m s−1.
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The interface velocity (at the base of the KH wave) in our simulation (figure 6a)
indicates a value of Uint ≈ 52 m s−1, which agrees well with the expected Dimotakis
wave speed.

2.5. Data analysis
Our goal is to study the vorticity dynamics as well as the liquid surface dynamics
in order to understand breakup mechanisms at different flow conditions. To this end,
λ2 contours at different cross-sections of the domain are analysed in time. Here, we
briefly review the definition of the λ2 method.

An objective definition of a vortex should permit the use of vortex dynamics
concepts to identify coherent structures (CS), to explain formation and evolutionary
dynamics of CS, and to explore the role of CS in turbulence phenomena. Jeong
& Hussain (1995) define a vortex core as a connected region with two negative
eigenvalues of S2

+ Ω2; where, S and Ω are the symmetric and antisymmetric
components of ∇u; i.e. Sij= (ui,j+ uj,i)/2 and Ωij= (ui,j− uj,i)/2. If λ1, λ2 and λ3 are
the eigenvalues such that λ1 > λ2 > λ3, this definition is equivalent to the requirement
that λ2< 0 within the vortex core, since λ3 is always negative because the sum of the
normal viscous stresses is zero. This definition is proven to meet the requirements
for existence of a vortex core in different flow conditions (Jeong & Hussain 1995),
while the vortex identification by the Q-definition (Kolář 2007) may be incorrect
when vortices are subjected to a strong external strain (Jeong & Hussain 1995), as
in our study.

3. Results and discussion
In this section, the vorticity dynamics associated with each of the breakup

mechanisms are analysed to explain the hole formation, the corrugation formation
and the lobe/ligament stretching at different Reynolds and Weber numbers. For
this purpose, one case is picked from each domain (see figure 1), and its vorticity
dynamics are studied using the λ2 criterion. We make use of some of our earlier
findings (Zandian et al. 2016), where necessary; however, those results are shown
from a different perspective, to convey our findings more clearly. The gas flows in
the positive x-direction, from left to right, in all of the figures in this section.

3.1. Vortex dynamics and surface dynamics
To interpret the surface deformation via vorticity concepts and to more clearly
delineate the complex 3D flow physics, the dual approaches of vortex dynamics and
surface wave dynamics are employed. The language of wave dynamics focuses on
crests, troughs and lobes, while the vortex dynamics terminology refers to vortex
rollers (eddies), braids and hairpins. The instability starts from the initially symmetric
KH waves. The crest of the KH waves, when amplified and slightly stretched in
the flow direction, is referred to as ‘KH crest’. As the 3D character of instability
develops, ‘KH crests’ divide into distinct ‘lobes’. The forward-most tip of the lobe
is referred to as ‘spanwise crest’, and the region between two adjacent crests is
called ‘spanwise trough’. In terms of the vorticity dynamics, the ‘KH crests’ and
‘KH troughs’ are equivalent to ‘vortex rollers’ and ‘braids’, respectively; see figure 7.

The spanwise vorticity rolls up as KH rollers. The braid connects two adjacent
rollers separated in x, which stretch the fluid in between. There are two modes of
unstable waves, corresponding to the two surface waves oscillating exactly in or out of
phase, commonly referred to as the sinuous (antisymmetric) and varicose (symmetric)
modes, respectively; see figure 7.
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x
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x
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y

FIGURE 7. Terminology used for vorticity and liquid–gas interface deformations from side
view (a) and top view (b).

Lobe
Rim bridge

(a) (b) (c) (d) (e) ( f )
Rim bridge Ligaments

Broken bridge
Droplets Stretched

ligamentExtended hole Hole extensionHole

y
z

x

FIGURE 8. (Colour online) Liquid surface deformation in the LoHBrLiD mechanism;
Rel = 320, Weg = 115 000 (Ohm = 1.06), ρ̂ = 0.5 and µ̂= 0.0022, at t= 18 µs (a), 22 µs
(b), 26 µs (c), 28 µs (d), 30 µs (e) and 32 µs ( f ).

3.2. Hole and bridge formations (LoHBrLiD mechanism)
The LoHBrLiD mechanism occurs at medium Rel and high Weg; see figure 1. This
process is shown in figure 8. The lobes form and thin on the primary KH wave
crests. The middle section of the lobes (the braid), where the highest strain occurs,
thins faster and thus perforates, creating a hole and a bridge on the lobe rim. Bridges
become thinner as the holes expand. Finally, the bridges break and create one or two
ligaments depending on the breakup location. The ligaments stretch and eventually
break into droplets under capillary action.

At lower Weg, the surface tension force resists the formation of holes. In this range,
usually one hole forms on the liquid lobe and stretches into a large one. At higher
Weg, lobes thin much more easily since the resistance due to the surface tension
forces is not large enough to stabilize the growth of the instabilities. In this range
usually several small-scale holes appear at different locations on the lobe, as seen
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(a) (b) (c) (d) (e)

FIGURE 9. (Colour online) Close-up view of the hole formation and expansion on a single
liquid lobe; Rel = 5000, Weg = 36 000, ρ̂ = 0.1 and µ̂= 0.0066. t= 10 µs (a), 11 µs (b),
12 µs (c), 13 µs (d) and 14 µs (e).

in the close-up view of figure 9(a). As these perforations grow, several of these
holes merge to create larger holes (figure 9b), and a thick liquid bridge is created
on the lobe rim (figure 9c). As the lobes continue to stretch and the holes continue
to expand, the bridges become thinner (figure 9d) and finally break to create several
ligaments (figure 9e). The mechanism of hole formation, to be discussed in this
section, is believed to be the same at high and low Weg values and density ratios;
the only difference is in the time, location and size of the holes.

Case D2a (table 1), which falls in the LoHBrLiD class, is chosen in this section to
study and explain the vortex dynamics in the hole-formation mechanism. At the end
of this section, Case D2b is studied to clarify the effects of lowering density ratio.
Zandian et al. (2016) and Jarrahbashi et al. (2016) related the hole formation to the
overlapping of the hairpin vortices that form on the braids. Their finding is confirmed
here and more details in the vortex overlapping process are revealed. In this section,
λ2 contours are elucidated in two cross-sections in x–z planes – one passing through
the spanwise crest and the other through the trough – along with the instantaneous
liquid–gas interface (red lines) position at different times.

Figure 10(a) shows the formation of lobes and hairpin vortices that occur on the
braid on both top and bottom sheet surfaces, at very early time t= 6 µs. The vortex
structure is symmetric at this time and consists of a large vortex just downstream
of the wave, which is hereafter called the ‘KH vortex’ (shown by the white arrows),
and hairpin vortices on the braid, between two adjacent KH rollers. The location of
the vortices relative to the interface are the same on the spanwise crest and trough
cross-sections at this time; i.e. the vortices on the spanwise trough cross-section (not
shown here) are slightly upstream of those on the spanwise crest; see the top views
of figure 10. The vortices have some undulations in x and manifest a hairpin structure
similar to what was observed by Bernal & Roshko (1986). Lasheras & Choi (1988)
attributed the appearance of three-dimensionality to the stretching along the principal
direction of the positive strain. The maximum amplification of the vortex lines occurs
near the braid region, where positive strain is the maximum. Therefore, they called
these hairpin vortices ‘strain-oriented vortex tubes’ and described a mechanism for
evolution of the 3D instabilities, where vortices enhanced by stretching are pulled
more strongly into the streamwise direction until a series of hairpins extend from the
underside of one roller to the top of its neighbour. A similar mechanism is seen here
for the two-phase flow.

As shown in figure 10(b), the upstream hairpins are pulled downstream by the
KH vortex on the outer side of the roller, while the downstream hairpins are pulled
upstream on the inner side of the KH roller (easily understood from a frame fixed
with the KH vortex). The direction of the streamwise hairpin stretch is determined
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FIGURE 10. (Colour online) λ2 contours on the spanwise crest (left) and the top view of
the liquid surface (right), at t= 6 µs (a), 10 µs (b) and 14 µs (c) of Case D2a.

by the global induction of the KH roller, as indicated by the black arrows in
figure 10(b). Martin & Meiburg (1991) explained that the sign of the streamwise
vorticity component is determined by the competition between global and local
inductions; i.e. between the overall effect of the vorticity field and the locally
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Outer hairpin on the lobe crest
(a)

(b)

Lobe
KH vortex

Inner hairpin originated from the braid

Inner hairpin

Outer hairpin
Thinning Lobe sheet

Ax

y
z

y

z

A

FIGURE 11. (Colour online) 3D Schematics showing the overlapping of the two hairpin
vortices – one from the lobe crest (outer black tube, pointing downstream), and the other
from the braid (inner red tube, pointing upstream) (a); A is the plane in which (b) is
drawn; cross-sectional view of the A-plane, showing the thinning of the lobe sheet due
to the combined induction of the two oppositely oriented overlapping hairpins (b). The
vortex schematics are periodic in x- and y-directions.

self-induced velocity of a vortex tube. While the global induction effect continues to
determine the sign of the streamwise braid vorticity, the direction of the streamwise
vorticity component in the crest region is determined by the local induction of the
vortex tube (Martin & Meiburg 1991).

The motion of the upstream and downstream hairpins on the outer and inner sides
of the KH roller – due to the roller’s induced motion – causes these two hairpins
to align spanwise and overlap – one layer locating on the outer surface of the lobe,
i.e. on the streamwise wave crest, and the other layer on the inner side of the lobe.
This hairpin overlapping has been observed and explained in both mixing layers (see
figures 3 through 6 of Comte et al. 1992) and in two-phase round jets (see figure 9 of
Jarrahbashi et al. 2016). Comte et al. (1992) discuss helical pairing of the oppositely
oriented hairpins and the formation of diamond-shaped vortex-lattice structures. As
shown in the illustrative sketches of figure 11, and also described by Jarrahbashi
et al. (2016), the liquid sheet between a pair of these overlapping, oppositely pointed
hairpins becomes thinner.

Figure 11(a) schematically depicts two overlapping hairpin vortices in the liquid–gas
interface region – one outer vortex originating from the lobe crest and stretching
downstream (the slender black tube), and the other inner vortex originating from
the braid and stretching upstream (the red tube). The KH vortex is shown by the
thicker grey tube in this figure. Figure 11(b) shows a cross-sectional view of the
vortex structure along with the lobe located between the two hairpin vortices on
the A-plane of figure 11(a). The induced velocity of the two oppositely oriented
overlapping hairpin vortices (see the qualitative streamlines shown by the black and
red arrows in figure 11b) pushes the top surface of the lobe downward and the
bottom surface upward, causing the lobe to become thinner in the middle and thus
become vulnerable to puncture at that region. This occurs at t = 16 µs, on the top
surface of the liquid sheet, as shown in figure 12. Three λ2 isosurfaces are shown in
this figure: the grey isosurface denotes the KH vortex (the grey tube in figure 11);
the green isosurface denotes the outer hairpin (the black hairpin in figure 11); and
the red isosurface denotes the inner hairpin (the red hairpin in figure 11). The λ2
isosurface tracks the strength of the vorticity but circulation on its surface is not

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Ir

vi
ne

 L
ib

ra
ri

es
, o

n 
22

 M
ar

 2
01

8 
at

 1
5:

54
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.113
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Vortex dynamics of atomization cascades 311

Lobe front

(a) (b) (c)

x

y

z
X

YZ

Outer hairpin

Inner hairpin

KH vortex

FIGURE 12. (Colour online) λ2 isosurfaces in a top close-up view of a liquid lobe in
Case D2a (a), and a 3D view of the same snapshot (b), at t = 16 µs. Top view of
the box drawn in image (a), showing the overlapping of the red and green isosurfaces
without the blockage of the grey KH isosurface and blue liquid surface (c). The isosurface
values are: λ2=−2× 1010 s−2 (grey), −3× 1010 s−2 (green) and −3× 109 s−2 (red). The
grey isosurface is made transparent in subfigures (a) and (b) to display the inner hairpin
underneath it. The hatched area denotes the approximate hairpin overlapping region, where
the hole would appear on the lobe later.

constant (as it is not a vortex surface); thus, it slightly differs from the surface of
a vortex tube. The λ2 magnitude of each isosurface is denoted in the figure caption.
The KH vortex in figure 12 is the strongest (i.e. greatest circulation) and, at its core,
has larger λ2 values than the hairpins; however, the outer isosurface, with a lower
λ2 value, is depicted to give a better indication of its size. The hairpin overlapping
region is denoted by a hatched area in figure 12(b). The overlapping of the outer
and inner hairpins can be clearly observed in figure 12(c), where the grey KH vortex
isosurface and the blue liquid surface have been removed from the box drawn in
figure 12(a). The hatched area shows the zone where the lobe thinning occurs and
the first hole forms a few microseconds later; see figures 14 and 15(a).

The sketches in figure 13 show the transition of a thin sheet from a symmetric
mode to an antisymmetric mode with the qualitative location of the KH vortices at
the two liquid surfaces. In the beginning, the top and bottom sheet surfaces as well
as their KH vortices are symmetric with respect to the centre plane, as shown in
figure 13(a). All plane jets in reality exit with symmetric perturbations because of the
long-wavelength perturbations due to the upstream chamber’s Helmholtz resonance
modes or driving compressor blade wakes, but the antisymmetric mode has a much
higher growth rate and thus eventually dominates. The true physical explanation
of this transition is intriguing, but remains somewhat elusive, and deserves careful
examination and explanation. Ashurst & Meiburg (1988) showed that the loss of
symmetry in the two-vortex-layer calculation is related to the enhancement and
reduction of relative streamwise displacements for filaments in the stronger layer by
the addition of the second layer of vorticity.

Due to this transition towards antisymmetry, the KH rollers on one of the layers
(the bottom layer in our case) are not able to stretch the bottom lobes and cause the
hairpins overlapping at early times; thus, lobe formation and thinning are delayed on
the bottom surface. This corresponds to the instant in figure 13(b) and the period 18–
34 µs in our simulation, shown in figures 14 through 19. As the sheet gets thicker,
i.e. the two vorticity layers get more independent, the transition towards antisymmetry
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x
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x
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z

(a)

(b)

(c)

FIGURE 13. (Colour online) Schematic showing the transition of a symmetric thin sheet
(a) to antisymmetric mode (c). The dashed lines denote the sheet centre plane. The black
and dark grey circles denote the two adjacent KH vortices on the top surface, and the
light grey and white circles are two adjacent KH vortices on the bottom surface.

is delayed, and both sides have time to roll up the surface waves and stretch them into
lobes. For the rest of this section, our focus will be only on the top interface, where
lobe stretching and hole formation are evident at early times.

As figure 14 shows, the KH vortex starts to move away from the KH wave at
18 µs. However, it has had enough time to roll the lobe and make the overlapping
occur on the top sheet surface. Notice that the KH vortex on the trough cross-section
(figure 14b) is still closer to its original location compared to the same vortex on the
crest cross-section (figure 14a). As described earlier, this results in further stretching
of the hairpins near the sides of the lobe compared to its crest; hence, holes occur
sooner near the lobe sides than at the lobe crest. This motivates the idea that the
KH vortex location and strength are important in formation or inhibition of holes at
early times. The KH vortex transition and structure is directly related to the liquid
viscosity, and thus the Reynolds number. At high Rel, even though vorticity diffusion
is slower, the fluids motion is less constrained by the viscous forces; thus, the KH
vortices advect away from the interface much more easily, and do not acquire enough
time to roll up the lobes and stretch the hairpins. Hole formation also depends on
the surface tension. The inertia should have enough strength to overcome the surface
tension forces in order to perforate the lobe. In conclusion, the LoHBrLiD mechanism
becomes less probable as Weg decreases or Rel becomes very high or very low; see
figure 1.
λ2 contours of figure 15 clearly show the overlapping of the outer and inner

hairpins at the location of the holes. The holes expand and create bridges at t= 20 µs
(figure 15a). Meanwhile, the KH vortices advect both downstream and away from
the interface. Later at 24 µs (figure 15b), the bridges break and create spanwise
ligaments. If the bridge breakup were to have happened at the spanwise crest instead
of its trough, the resulting two ligaments would have been streamwise-oriented, as in
the sketch of figure 2.

The broken bridges undergo capillary instability and break further into droplets and
smaller ligaments, as shown in figures 16 and 19. Meanwhile, the hairpin vortices that
are overlapping near the spanwise trough, thin the bridges, as has been indicated by
the red arrows in figure 16(b). This thinning along with the stretching of the bridges
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FIGURE 14. (Colour online) λ2 contours on the spanwise crest (a) and the spanwise
trough (b), with the top view of the liquid surface on the right, at t = 18 µs of Case
D2a.

by the induced velocity of the KH roller deforms the bridge and makes it thinner and
on the verge of further breakup. This completes the LoHBrLiD breakup mechanism
at primary atomization. The liquid interface at this time has become completely
antisymmetric (figure 16) following the KH vortices that became antisymmetric
earlier.

The role of vortices in the LoHBrLiD breakup mechanism is summarized
schematically in figure 17. This figure shows the liquid surface and also the qualitative
location of the nearby vortices at four consecutive times. At an early time t1, hairpin
vortices form on the braids due to the strain caused by the neighbouring KH vortices.
The hairpins closer to the KH wave crest – shown by black lines – are stretched
downstream, and the hairpins near the KH wave trough – shown by red lines – are
stretched upstream by the induced motion of the KH rollers. The hairpin parts that
are stretched downstream are rolled over the KH vortex tube, and are denoted by
solid lines, while the hairpin parts that are stretched upstream are pulled under the
KH vortex tube, and are denoted by dashed lines.

Later at t2, the KH vortices deflect more under the induction of the hairpin vortices.
The KH vortex stretches the lobes over itself and covers underneath the lobe surface at
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FIGURE 15. (Colour online) λ2 contours on the spanwise crest (left) and the top view of
the liquid surface (right), at t= 20 µs (a) and 24 µs (b) of Case D2a.

later times (see times t3 and t4 in figure 17). The black and red hairpins that roll over
and under the KH vortex, respectively, overlap later at the centre of the lobe as well
as the two sides of the lobe; i.e. at the spanwise troughs. These overlapping regions
have been denoted in figure 17 at t3. The lobe sheet fills the vertical gap between
these overlapping hairpins, causing the lobe to become thinner and thus vulnerable to
puncture at the overlapping regions, as was described in figure 11.

Whether the liquid sheet subject to these conditions punctures or not depends on
other flow conditions, particularly the surface tension. At high Weg (high Ohm), the
hole formation prevails and the lobes perforate at the predicted locations, as shown at
t4 in figure 17. As the overlapping hairpin filaments continue to stretch, the holes also
stretch and expand, creating even larger holes and thinner bridges. If Weg is not large
enough, the liquid lobe in the overlapping region can recover instead. In this case,
hole formation is inhibited and the lobes stretch directly into ligaments via LoLiD or
LoCLiD mechanisms, as discussed later.

The mechanism of hole formation at low density ratios is similar to the high ρ̂

described in figure 17, with minor differences. Figure 18 shows the vortex structures
and the lobe deformation at 90–94 µs for ρ̂ = 0.05 (Case D2b). Three λ2 isosurfaces
corresponding to the KH vortex (grey), the outer hairpin (green) and the inner hairpin
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Capillary instability

Time: 0.000028
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hairpins

(a)

(b)
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–50.0 –20.0 –6.0 –2.5 –0.5

Overlapping
hairpins

Overlapping
hairpins

Inner
hairpins

x

xz

y

z

x

z

FIGURE 16. (Colour online) λ2 contours on the spanwise crest (a) and the spanwise
trough (b), with the top view of the liquid surface on the right, at t = 28 µs of Case
D2a.

(red) are shown in figure 18(a) at 90 µs. The liquid surface has been removed from
this image to reveal all the vortex structures, but the black solid line indicates the
location of liquid lobe front edge for comparison. The liquid surface at the same time
is shown in figure 18(b). The outer and inner hairpins at this low ρ̂ stretch and wrap
around the KH vortex in opposite directions, and overlap on top and bottom of the
lobe. The difference here is that the hairpins are more stretched and the overlapping
region is more elongated in the streamwise direction, as shown by the hatched area
in figure 18(a,b). The holes that are formed near the hatched area at later times
(figure 18c,d) are also more elongated in the streamwise direction compared to the
high ρ̂ case shown in figure 15, where the holes were more spanwise oriented. This
finding agrees with the predictions of hole location by Jarrahbashi et al. (2016) (see
their figure 20). There when the gas density increased, the edge curvature decreased
and the locations of the holes in neighbouring lobes became closer to each other.
This caused the neighbouring holes to merge and expand the hole in the azimuthal
(spanwise) direction.

The breakup mechanism involving hole and bridge formation and the role of vortical
structures in this regard were discussed in this section via consecutive tracking of λ2
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Deflected hairpins Outer hairpins pulled over
Inner hairpins pulled under

Wave front

Overlapping on the sides Overlapping on the lobe Holes on the sides Hole on the lobe

Lobe

X

Y
Z

KH vortex

FIGURE 17. (Colour online) Schematics of the LoHBrLiD process at four consecutive
times. The liquid–gas interface is shown in blue, and the KH vortex by black tubes. The
red and black lines denote the inner and outer hairpin vortices near the KH wave trough
and crest, respectively. The solid or dashed lines denote where the hairpins are stretched
upstream and inward, or downstream and outward, respectively.

contours near the interface. Vortex dynamics is able to explain the breakup process at
high Weg and medium Rel. In the remainder of this section, λ2 contours along with
the interface location are shown at a few later time steps to track the deformation of
the ligaments and also to see the evolution of the surface waves after the KH vortices
have left the interface.

Figure 19 shows λ2 contours of the liquid jet in the period 30–34 µs. Even though
the original KH vortex (denoted by the white arrow) is now advected downstream
and away from the waves, the vorticity contours on the braid stretch and collect
at the crest of the new KH waves and create new KH vortices (figure 19a). These
vortices roll a new KH wave and stretch new sets of lobes similar to the original
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x
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zx
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z

(a) (b)

(c) (d)

FIGURE 18. (Colour online) λ2 isosurface in a top close-up view of a liquid lobe in
Domain II at low density ratio (Case D2b) at 90 µs (a); the solid black line shows the
lobe front edge location and the hatched area shows the location of hairpin overlapping.
The isosurfaces represent: the KH vortex with λ2 =−4× 109 s−2 (grey), the outer crest
hairpin with λ2=−6×109 s−2 (green) and the inner trough hairpin with λ2=−3×109 s−2

(red). Lobe surface showing the hole formation from a top view at 90 µs (b), 92 µs (c)
and 94 µs (d) of Case D2b.

ones; see figure 19(b). The direction of the induced motion by these new vortices
are indicated by the black arrows in figure 19(b). The direction in which the fluids
are swirling around the KH vortices are also denoted by the blue curly arrows. At
t= 34 µs the sheet and the vortices are antisymmetric with half a wavelength phase
difference between the top and bottom surfaces in the streamwise direction. The
vortices on the bottom side are now nearly stationary with respect to the interface;
hence, they have enough time to roll the waves and form stretched lobes on the
bottom surface (figure 19b). As the new lobes get stretched, new pairs of hairpins
form on their braids, and the whole LoHBrLiD process repeats, creating new holes,
bridges, ligaments and droplets. Meanwhile, the formerly broken bridges undergo
capillary instability and thin at the necks and break into droplets, as shown in the
top view of figure 19(b).

Overlapping of the oppositely oriented hairpins is the cause of lobe perforation,
as described in this section; however, the locations of the perforations and the
direction and rate of their growth depend on the overlapping location with respect
to the lobe sheet. What was presented in this section was an ideally simple case
to explain the process. In reality, the hairpin structures can be more irregular than
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Broken ligament

(a)

(b)

New KH vortex
forming

–90 –50 –10 –7 –4 –1
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New KH vortex
forming
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Stretched lobe

Droplet

Time: 0.000030

Time: 0.000034

FIGURE 19. (Colour online) λ2 contours on the spanwise crest (left) and the top view of
the liquid surface (right), at t= 30 µs (a), and 34 µs (b) of Case D2a.

what was presented here, which would shift the overlapping zones and hence change
the location of the first perforations. More hole-formation examples are presented by
Jarrahbashi et al. (2016) and Zandian et al. (2016). Jarrahbashi et al. (2016) also
showed the direction in which the holes merge and expand at high and low density
ratios.

3.3. Corrugation formation at high Rel (LoCLiD mechanism)
The LoCLiD mechanism occurs at high Rel and low Weg (low Ohm), as indicated
in figure 1. This process is shown in figure 20. The lobes form similar to the
previous case, but do not stretch as much. Corrugations form on the lobes’ front
edge and stretch to create ligaments. Multiple ligaments are formed per lobe, typically
shorter and thinner compared to the ligaments seen in the Domain II for LoHBrLiD.
Eventually, the ligaments detach from the liquid jet and break up into droplets by
capillary action. These droplets are consequently smaller than the ones formed in the
LoHBrLiD mechanism. Sequential evolution of λ2 contours on y-plane cross-sections
are used in this section to delineate the physics of this process, and more particularly
describe why lobes do not perforate but get corrugated at higher Rel and lower Weg.
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x
Lobe Corrugations Stretched corrugations Ligaments

Multiple ligaments
per lobe Droplets

y
z

(a) (b) (c) (d) (e) ( f )

FIGURE 20. (Colour online) Liquid surface deformation following the LoCLiD mechanism
in Case D3a, at t= 44 µs (a), 48 µs (b), 50 µs (c), 52 µs (d), 56 µs (e) and 60 µs ( f ).

Flow direction

(a) (b)

Hairpin vortex
on the crest

Hairpin vortices
on the braid

Hairpin vortex
on the braid

KH vortex spliting

x

z

x

z

KH vortex

–6.00 –1.00 –0.08 –5.00 –0.75 –0.08

FIGURE 21. (Colour online) λ2 contours on the spanwise crest cross-section, at t= 6 µs
(a) and 10 µs (b) of Case D3a.

Case D3a (see table 1) is analysed in this section; at the end of this section, the
effects of lower density ratio are described by analysing Case D3b.

Figure 21 shows λ2 contours on a y-plane passing through the spanwise crest at
6 µs and 10 µs. Since the vortex structure passing through the spanwise trough has
similar features, albeit with some phase difference with respect to the vortices at the
spanwise crest, it will not be shown here. In the beginning, the vorticity field contains
a series of hairpin filaments on the braid and a stronger KH vortex just downstream
of the KH wave crest (indicated by the white arrows). The hairpins are stretched by
the neighbouring rollers as discussed before. As also described by Martin & Meiburg
(1991), since stretching is the most intense in the downstream half of the braid region,
hairpin vortices acquire a larger streamwise component in the upstream neighbourhood
of a vortex roller (i.e. on the lobe crest) than its downstream side (i.e. on the trough).
Hence, the hairpin filaments that are closer to the streamwise wave crest (denoted by
the grey arrows) are stronger than the upstream braid hairpins. Ashurst & Meiburg
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Gas

Liquid

s sx

z f f

s

f

KH vortex Vortex splitting Fast-moving vortex

Slow-moving vortex

FIGURE 22. Schematic of how KH vortex splits into a slow-moving vortex (denoted by s)
in the liquid and a fast-moving vortex (denoted by f ) in the gas zone, at four consecutive
times. The qualitative velocity magnitudes are denoted by the straight arrows in the gas
and the liquid. The vortices are nearly uniform in the y direction, normal to the paper.

KH vortex
spliting

(a) (b)

X

Y

Z
X

Y
Z

Outer
crest hairpin

Lobe front

Inner
braid hairpin

Fast-moving
vortexSlow-moving

vortex

FIGURE 23. (Colour online) λ2 isosurfaces in a close-up view of a liquid lobe in Case
D3a, from a top view (a) and a 3D view (b), at t = 12 µs. The isosurface values are:
λ2=−8× 1010 s−2 (grey), −4× 1010 s−2 (green) and −1010 s−2 (red). The liquid surface
is shown in blue.

(1988) also found that, while in one vortex layer the filaments at the centre between
two spanwise rollers experience the most stretching, if a second vortex layer is added,
the filaments with the strongest spanwise modulation will be located closer to the
downstream roller; i.e. three-dimensionality occurs first in the downstream half of the
braid region. The vorticity field as well as the sheet itself are initially symmetric with
respect to the centre plane. The hairpin filaments reside near the interface, slightly
inclined towards the gas zone.

At high Rel, inertia dominates the viscous forces and the fluid particles are more
free to move around as the viscous forces do not produce enough resistance against
their motion – especially in the gas zone. The higher velocity of the gas layer
compared to the liquid layer causes the KH roller to split into two vortices at 10 µs
(see figure 21b); this process is shown schematically in figure 22 and using the λ2
isosurfaces in figure 23. The outer part of the KH vortex (indicated by the white
arrow in figure 21b), which resides in the fast-moving gas layer, separates from
the part that is inside the surface of the lower speed liquid (indicated by the black
arrow in figure 21b). The splitting of the KH vortices starts at 10 µs (figure 21b)
and continues until 12 µs (figure 23). The grey, green and red λ2 isosurfaces in
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FIGURE 24. (Colour online) λ2 contours on the spanwise crest cross-section, at t= 14 µs
(a), 16 µs (b) and 18 µs (c) of Case D3a.

figure 23 denote the KH vortex, the outer (crest) hairpin and the inner (braid) hairpin,
respectively (the magnitude of each λ2 isosurface is indicated in the caption). The split
slow- and fast-moving vortices are denoted by ‘s’ and ‘f ’ in figure 22, respectively.

As demonstrated in figures 22 and 24(a), part of the KH vortex that resides in
the faster-moving gas, near the liquid interface, advects downstream with the gas,
while the slow-moving vortex (indicated by the black arrow in figure 24a) advects
more slowly with the interface velocity, remaining stationary relative to the liquid
surface. The two vortices are completely separated at t4 in figure 22, corresponding to
t=16 µs in our simulation (see figure 24b). This vortex separation has two significant
consequences. (i) The slow-moving vortex (black vortex) downstream of the KH wave
is not strong enough to curl the KH wave and stretch the lobe downstream over itself.
Consequently, the outer hairpins do not overlap in x with the inner trough hairpins, as
in the Domain II for LoHBrLiD; hence, the hole formation is inhibited at early times.
(ii) The fast-moving vortex (the white vortex) gets closer to the downstream outer
hairpin as it advects away from the upstream hairpins, residing in the vicinity of the
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KH vortex
KH vortex splitting

Corrugated hairpinFast-moving vortexSlow-moving vortex
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FIGURE 25. Schematic of the hairpin undulation formation under the influence of the
fast-moving KH vortex (denoted by 1f ) at four consecutive times t1–t4, from a frame of
reference moving with the slow-moving KH vortices (denoted by 1s and 2s).

trough; see figure 24(b). This successive variation in the distance between the hairpins
and the fast-moving vortex induces a fluid motion that stretches the hairpins in the
opposite directions, resulting in a less-orderly hairpin structure with more undulations,
as shown schematically in figure 25.

After splitting of the KH vortex into fast- and slow-moving vortices (t2 in
figure 25), the fast-moving vortex (1f ) advects downstream over the outer hairpin (t3
in figure 25). As the faster-moving vortex (1f ) passes over the hairpin, its induced
motion pulls the crest of the hairpin in the upstream direction under vortex 1f ,
causing the hairpin to undergo an undulation with smaller local wavelength (≈45 µm).
Meanwhile, the tip of the hairpin (now having two crests) is stretched downstream
over the neighbouring slow-moving vortex (2s), and the trough of the hairpin is
stretched upstream under the upstream slow-moving vortex (1s) (t3 in figure 25). The
streamwise stretching on different parts of the hairpins is indicated by the black curly
arrows. As the faster-moving vortex (1f ) moves further downstream, the newly formed
undulation wraps around it and stretches downstream, as shown at t4 in figure 25.
Therefore, another turn is created on the hairpin vortex and the local wavelength
of the undulations decreases (15–35 µm). As the fast-moving vortex keeps moving
downstream, the hairpin corrugations stretch with it. It will be shown below that
this hairpin structure results in less stretched (slower stretching) and more corrugated
lobes. The direction of the streamwise stretch on the hairpin filaments – based on
the velocity field induced by the two split rollers – is denoted by the red arrows in
figure 24(c). The sheet is still symmetric at this moment, while the vortices have lost
their symmetry with respect to the centre plane. The fast-moving vortex (1f ) finally
reaches the downstream slower-moving vortex (2s) and combines with it to create a
stronger KH vortex, which stretches the now corrugated hairpin in the downstream
direction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Ir

vi
ne

 L
ib

ra
ri

es
, o

n 
22

 M
ar

 2
01

8 
at

 1
5:

54
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.113
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Vortex dynamics of atomization cascades 323

Wave front

Lobe

x

y
z

Corrugated lobe Overlapping hairpinsVortices merging
Stretched corrugation/ligament

Merged vortex

Deflected hairpins KH vortex tube Outer hairpin pulled over
Inner hairpin pulled under

Fast-moving vortex
Slow-moving vortex

FIGURE 26. (Colour online) Schematic of the LoCLiD process at four consecutive times.
The liquid surface is shown in blue, and the KH vortex is denoted by the black tube. The
red and black lines denote the inner and outer hairpin vortices near the trough and crest
of the KH wave, respectively. The solid and dashed lines indicate the parts of the hairpins
that are stretched upstream and inward, or downstream and outward, respectively.

To better understand the consequence of hairpin vortex structure on the liquid
surface deformation at high Rel and low Weg, the evolution of the vortices and the
interface in the LoCLiD process (Domain III) are schematically depicted in figure 26
at four consecutive instances. At an early time t1, the braid regions connecting
the emerging KH rollers become progressively more depleted of vorticity. The
spanwise vortices on the braid deflect due to the induced motion of the neighbouring
KH rollers in both the upstream and downstream directions – creating the hairpin
vortex structures with a spanwise size equal to the spanwise perturbation wavelength
(100 µm). Two hairpins are formed on the braid – one located near the lobe crest,
called the outer hairpin and denoted by the black line (corresponding to the green
isosurface in figure 23), and the other slightly upstream near the trough, called the
inner hairpin and denoted by the red line (corresponding to the red isosurface in
figure 23). The deflected hairpin filaments form the lobes as they are stretched by
the KH roller. So far, the process is similar to the LoHBrLiD process.
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As discussed earlier and demonstrated in figure 25, the hairpin vortices get
corrugated under the influence of the fast-moving vortex that hovers over the interface
after splitting of the KH vortex. This corresponds to t2 and t3 in figure 26. Only
the deformation of the outer hairpin (black hairpin) was shown in figure 25; the
inner hairpin (red hairpin) undergoes the same process, but in the opposite direction –
stretching downstream and over the fast-moving vortex. The upstream turns and bends
on the hairpins prevents further downstream stretching of the lobes. Consequently,
the lobes are less stretched and more blunt compared to the lobes in Domain II
(compare t2 in figure 26 with t2 in figure 17). The fast-moving vortex moves closer
to the interface to merge with the downstream slow-moving vortex and later passes
through the lobe and reaches the slower vortex below the lobe. In this process, the
faster vortex carries along the corrugated outer hairpin that is wrapping around it.
Consequently, the corrugated outer hairpins penetrate through the lobe and locate
underneath the lobe in contrast to Domain II, where the outer hairpins were located
on top of the lobe. Since this process occurs quickly, the corrugated hairpins do
not have enough time to completely wrap around the faster vortex and create a
combined vortex; therefore, after the merging of the two split KH vortex counterparts,
only two pairs of undulated hairpins – which are separate from the KH vortex –
remain on top and bottom of the reformed KH vortex, right below the lobe. The
liquid surface approximately follows the hairpin structures with some delay at this
high-Rel range – as the vortex lines are nearly material lines. Because of these shorter
hairpin wavelengths, corrugations with length scales comparable to the local hairpin
wavelengths (15–25 µm) form on the front-most edge of the lobes, as shown in
figure 26 at t3. Both experimental observations (Lasheras & Choi 1988; Liepmann &
Gharib 1992) and numerical simulations (Brancher et al. 1994; Danaila et al. 1997)
for homogeneous jets show that the size of vortex pairs (lobes in two-phase flows)
decreases with increasing Reynolds number.

Upon creation of a stronger KH vortex downstream of the KH waves at t4 – after
merging of the fast- and slow-moving vortices – the new KH roller, which is now
located under the lobe (now a thicker tube) is strong enough to stretch the hairpins
and the corrugations. The two hairpin layers overlap as illustrated in figure 26 at t4.
In this figure, the dashed lines represent the hairpins stretching upstream and on the
streamwise trough (i.e. lower surface of the gas tongue), while the solid lines denote
parts of the hairpins that are stretched downstream below the lobe (i.e. upper surface
of the gas tongue).

The illustrative sketches of figure 27 show the corrugated hairpin structures and
their position with respect to the lobe in the LoCLiD process (corresponding to t4
in figure 26). The black tube represents an outer hairpin on the lobe crest and the
red tube represents an inner hairpin on the streamwise trough (originating from the
braid). The two hairpin layers – after getting corrugated due to the induced motion
of the two halves of the split KH vortex (see t2 and t3 in figure 25) – overlap under
the lobe, as shown in figure 27(a). Following the fluid motion induced by the vortex
pairs, the lobe front edge gets corrugated with comparable length scales to the hairpin
undulation wavelength; see figure 27(a). The layer of the outer hairpin (black tube)
is located underneath the lobe (on top of the gas layer), and the layer of the inner
hairpin (red tube) is located on top of the interface at the trough; see figure 27(b).
The induced flow creates undulations on both the bottom surface of the lobe and the
trough surface. The combined induction of the two oppositely oriented overlapping
hairpin layers thins the gas layer that fills the vertical gap underneath the lobe; i.e. the
lobe collapses on the liquid sheet as the bottom surface of the lobe descends and the
trough surface ascends; see the qualitative streamlines in figure 27(b).
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z

Outer hairpin on the lobe crest(a)

(b)

Lobe KH vortex

Inner hairpin on the trough

Lobe
Outer hairpin

Inner hairpin

A

A

y

x

z

y

FIGURE 27. (Colour online) 3D Schematics showing the overlapping of the outer hairpin
(black slender tube) and the inner hairpin (red tube) resulting in formation of lobe
corrugations (a) – A is the plane in which (b) is drawn; cross-sectional view of the A-plane
showing the corrugation formation and thinning of the gas tongue due to the combined
induction of the overlapping hairpins (b). The vortex schematics are periodic in x- and
y-directions.

As the counter-rotating pairs of hairpins stretch under the induction of the KH
vortex, the corrugations on the lobes stretch with them and form thin ligaments (see
t4 in figure 26). The ligaments stretch downstream and break up into droplets as they
undergo capillary instabilities (the ligament breakup mechanism is discussed in § 3.4).
In the meantime, the eddies cascade into smaller vortical structures as transition to
turbulence occurs. The smaller vortices are moved towards the gas by the induction
of the larger eddies. The outward movement of the vortices spreads the droplets in the
normal direction, helps the expansion of the spray angle, and enhances the two-phase
mixing.

The process of lobe-sheet collision after the merging of the two split KH vortices is
shown in the side views of the liquid sheet along with λ2 contours near the interface
in figure 28. The antisymmetric vortices, which now are strong enough to stretch the
lobes, create antisymmetric KH waves, at 44 µs (figure 28a). The hairpin vortices
on the KH wave crest and trough stretch in the opposite directions following the
induced fluid motion of the KH roller. Following the direction of the swirl, the hairpin
projections on the trough are stretched upstream from the inner side of the roller,
while the hairpin projections on the KH crest are stretched downstream from the outer
side of the roller. The direction of streamwise stretch on the fluid elements is shown
by the red arrows in figure 28.

Recall that at lower Rel the two overlapping hairpins lie above and below the lobe
and cause its thinning. At higher Rel, on the other hand, the outer and inner hairpins
are inside the liquid (very close to the surface), and overlap on outer and inner sides
of the gas layer that penetrates under the lobe. To understand this better, consider the
opposite perspective; i.e. the layer of gas that fills the vertical gap underneath the KH
waves can be considered as an upstream-pointed gas tongue, surrounded by the liquid;
see figure 28(b). The combined induction of the overlapping hairpins thins the tongue
similarly to the process described in figure 11. The thinning regions are indicated by
the two thin black arrows in figure 28(c). Since it would be confusing to describe a
hole formation in the tongue, we could interpret this phenomenon as the collapse of
the lobe on the jet, encapsulating the gas in between.
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Outer crest hairpins
stretching downstream

(a) (b)

(c)

–35.00 –10.00 –7.00 –5.00 –3.00 –0.75 –70.0

–100.0 –40.0 –6.0 –2.0 –0.5

–10.0 –6.0 –2.0 –0.5

Inner braid hairpins
stretching upstream

Outer and inner
hairpins overlaping

Outer and inner
hairpins overlaping

Thinning

Hairpin stretch
direction Gas lobes

x

z

x

z

x

z

FIGURE 28. (Colour online) λ2 contours on the spanwise crest cross-section, at t= 44 µs
(a), 46 µs (b) and 48 µs (c) of Case D3a.

Figure 29 shows the top view of a corrugated lobe and the λ2 contours at three
spanwise (y–z) planes passing though the lobe body (plane A–A), through lobe
corrugations (plane B–B), and through the braid (plane C–C), at 50 µs. The λ2
contours clearly show the vortical structures suggested by the schematics of figure 27.
Upstream of the lobe front, at plane A–A, one downstream stretching vortex pair
is seen just underneath the lobe – indicated by the black curly arrows – and three
upstream stretching counter-rotating vortex pairs are seen just above the trough surface
– indicated by the red curly arrows. At this cross-section, the red hairpin shows the
three vortex pairs shown in figure 27(b), but the black hairpin still has the main two
legs and does not manifest undulations in this plane. That is, the undulations have
not stretched enough to reach the A–A plane yet. The effects of these vortex pairs
on the liquid surface is evident in this figure. Moving slightly downstream, in plane
B–B, both black and red hairpins manifest three vortex pairs, located under the lobe
and above the trough, respectively. The λ2 contours at this cross-section agree well
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A

A–A

–100 –40 –10 –4

B–B

C–C
KH vortex

z

y

z

y

z

y

x

y

z

B C

A B C

FIGURE 29. (Colour online) Top view of a liquid lobe in Case D3a at t = 50 µs (left)
and the λ2 contours on three yz-cross-sections (right); A–A passing upstream of the lobe
front, B–B passing through the corrugations, and C–C passing downstream of the lobe.

with the scenario depicted in figure 27(b) on plane A. However, the vortex pairs are
not nicely aligned in y, as shown in figure 27(b). The distance between the two legs
of each vortex pair has been denoted on the figure. As indicated before, the vortex
undulations with wavelengths in the range 15–35 µm are seen in this picture. The
creation of bumps and craters on the liquid surface induced by these vortex pairs is
also seen here. Further downstream, on plane C–C, only the two main legs of the
red hairpin and parts of the KH vortex are seen. This is what would be expected
based on the 3D schematic of figure 27(a). The distance between the two legs of
this hairpin vortex is 70 µm at this cross-section. The wavelength of the undulations
and the scale of surface corrugations presumably depend on other parameters such
as surface tension and liquid viscosity; however, analysis of the effects of these
parameters is beyond the scope of this article and would be an interesting subject for
a prospective study.
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Fast-moving
KH vortex

Slow-moving
KH vortex

X

Y

Z

X

Y

ZX

Y

Z

(a) (b)

(c) (d)

FIGURE 30. (Colour online) λ2 isosurface in a top close-up view of a liquid lobe in
Domain III at low density ratio (Case D3b) at 64 µs (a); the solid black line shows the
lobe front edge. The isosurfaces represent: the fast- and slow-moving KH vortices with
λ2=−7× 1010 s−2 (grey), the outer crest hairpin with λ2=−4× 1010 s−2 (green) and the
inner trough hairpin with λ2=−3× 1010 s−2 (red). Lobe surface showing the corrugation
formation from a top view at 64 µs (b), 66 µs (c) and 68 µs (d) of Case D3b.

The mechanism of corrugation formation at lower density ratios is similar to
what was shown above in this section. However, the hairpins are not as easily bent
(corrugated more slowly) as in high density ratios and, consequently, the number of
corrugations are less. Figure 30 shows the vortex structures along with the images
of a lobe from a top view in the 64–68 µs period of Case D3b (see table 1). The
vortex structures in figure 30(a) correspond to the liquid lobe in figure 30(b). The
liquid surface has been removed from figure 30(a) to show all the vortices under the
liquid surface; to facilitate the comparison between the vortex structures and surface
structures, the lobe front edge is denoted in this figure by the solid black line. The
outer hairpin (green isosurface) and the fast-moving KH vortex still lie above the lobe
surface at 64 µs, while the inner hairpin (red isosurface) and the slow-moving KH
vortex lie underneath the lobe and closely downstream of the lobe front. Following
the illustrations in figure 25 (at t3 and t4), the tip of the outer hairpin stretches
upstream while the inner hairpin stretches downstream under the influence of the
fast-moving vortex. This process creates the hairpin undulations and increases the
number of counter-rotating vortex pairs along the lobe span. However, comparison of
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figures 30(a) and 29 reveals that the hairpin corrugation appears much more quickly
at high gas density, as three pairs of counter-rotating hairpins are seen at an earlier
time in figure 29. At low gas density, the hairpins are not easily deflected and bent;
the reason is conjectured to be the lower gas inertia. While the hairpins are in the
gas, the lower inertia of the gas slows down the process of hairpin deflection. By the
time the outer hairpin and the fast-moving vortex move into the liquid, the hairpin
deformation hastens and another turn forms at its trough (at the centre of figure 30a),
where the green hairpin stretches downstream, over the fast-moving vortex. Thereafter,
the number of undulations increases and the corrugations stretch. The relatively higher
inertia of the neighbouring liquid retards the rate of growth of the instability. That is,
the reaction of the hairpins to the KH vortex is slowed.

Figure 30 confirms that the lobe deformation is in fact an outcome of the KH and
hairpin vortex distortions, not the other way around. The vortex and liquid structures
at 64 µs, shown in figure 30(a,b), prove that the vortex deformation precedes the
surface deformation. At this time, the hairpins have been already distorted and
manifest two pairs of counter-rotating streamwise vortices near the lobe front, while
the lobe front itself does not show any corrugation. At later times (figure 30c,d),
two corrugations start to form following the structure of the undulated hairpins. This
transforms the lobe from a singular protrusion to two smaller ones growing out of the
corrugated rim. While the lobe rim stretches under the influence of the KH vortex
(after the two split counterparts merge), it also retracts towards the centre by the
capillary forces. This brings the hairpins and the corrugations closer to the centre
of the lobe, as seen in figure 30(d). This retraction is faster at lower Weg; compare
figures 30 and 29.

3.4. Lobe and ligament stretching at low Rel (LoLiD mechanism)
At low Rel and low Weg, the surface tension force resists perforation. The liquid
viscosity is also fairly high and damps the small-scale corrugations on the lobe front
edge. Consequently, the entire lobe stretches slowly into a thick and long ligament,
which eventually breaks into large droplets. This terminates the LoLiD breakup
mechanism, which prevails in Domain I, shown in figure 1. The LoLiD process is
shown step by step in figure 31. The case shown in this figure (Case D1a) is taken
for vortex analysis in this section. λ2 contours on y-planes and λ2 isosurfaces in the
interface vicinity are used in this section to explain the vortex dynamics of the LoLiD
process.

As shown in figure 32(a), the process starts with a large KH roller downstream of
the KH wave (denoted by the white arrow), hairpin filaments on the braid, and a much
stronger hairpin filament on the KH wave crest (denoted by the dark grey arrow).
Because of the high gas viscosity, the KH vortex diffuses much faster into the gas
and at 6 µs the vortex core is entirely in the gas zone. Since the gas phase has higher
velocity compared to the liquid phase, the gas distant from the liquid surface advects
faster with respect to the interface. Hence, a few microseconds later, say at 10 µs
(figure 32b), the entire KH roller advects downstream with respect to the interface as
its core moves farther from the interface via diffusion. The KH roller gains speed as it
moves away from the interface. In contrast, the hairpin filaments that are closer to the
liquid surface remain almost stationary with respect to the interface; see figure 32(c).
The KH vortex gets larger with time as it diffuses; compare figure 32(a,c).

The KH roller reaches the neighbouring downstream crest hairpin at 16 µs
(figure 33a). Meanwhile, the braid hairpins overlap with the crest hairpins, constraining
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Lobes

(a) (b) (c) (d) (e) (g)( f )

Elongated lobes
Ligaments Broken ligaments

DropletsCorrugations
Stretching corrugations

x

y
z

FIGURE 31. (Colour online) Liquid surface deformation following the LoLiD mechanism
in Case D1a, at t= 26 µs (a), 36 µs (b), 40 µs (c), 44 µs (d), 46 µs (e), 48 µs ( f ) and
52 µs (g).

the lobe sheet in between. So far, the vortex dynamics manifest the conditions required
for hole formation, i.e. overlapping of two oppositely oriented hairpins on top and
bottom of the lobe, as well as for corrugation formation; i.e. constant pull in opposite
directions induced by a moving vortex hovering over the hairpins. However, none of
these structures are seen on the lobe at this moment (see figure 31a). The inhibition
of hole formation is due to the high surface tension. In such a low Weg, the inertia
and viscous forces are not strong enough to overcome the surface tension force to
stretch and thin the lobe; hence, the lobe perforation is inhibited. Also, because of
the high liquid viscosity at such a low Rel, the liquid surface deformation is much
slower. Hence, the corrugation formation on the lobe edge does not occur as quickly
as for the higher Rel. Small-scale corrugations are damped by both the high viscous
and high surface tension forces. Thus, the lobe slowly stretches into a thick ligament.
Moreover, the KH roller is also farther away from the interface in this case compared
to the LoCLiD process (compare figures 33a and 24c), which means that it has a
much weaker influence on the hairpin filaments.

The tip of the KH wave acts like a backward-facing step for the gas flow and a
temporary recirculation zone forms immediately downstream of the wave, as shown in
figure 34. This is very similar to the scenario seen at low density ratios by Hoepffner
et al. (2011). They also showed that the head of the wave appears to the gas stream
as a fixed obstacle, with the ensuing vortex shedding. The high strain rate at the braid
depletes the vorticity upstream of the braid and collects the vorticity into a new vortex
just downstream of the KH wave, in the recirculation zone at 20 µs. This new vortex
is indicated by the thick black arrow in figure 33(b) and the black circles in figure 34.
When the KH roller (vortex 1) passes over the KH wave front (see t1 in figure 34),
the mutual induction of this roller and the new vortex (vortex 3) causes the KH roller
to advect farther downstream, further stretching the KH vortex. The local induction
of each vortex on the neighbouring vortices is indicated by the straight arrows of
the same shading as the source vortex in figure 34. When the KH vortex (vortex 1)
passes over the downstream wave at 22 µs (figure 33c), the mutual induction of the
vortices pushes away the KH vortex, advecting it in the z-direction; see t2 in figure 34.
The stronger induction by vortex 4 pushes vortex 1 in the direction normal to the
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(a) (b)
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FIGURE 32. (Colour online) λ2 contours on the spanwise crest cross-section, at t= 6 µs
(a), 10 µs (b) and 14 µs (c) of Case D1a.

line connecting the centres of the two vortices (in the direction of the black arrow).
Vortex 3 also induces a flow that would bring vortex 1 closer to the interface; however,
this induction is much weaker as vortex 3 is more distant from vortex 1 compared to
vortex 4. The new vortex wraps under and around the KH roller at its crest and later
over the trough of the adjacent downstream KH roller, as shown in figure 35. Thus,
this new vortex (the red tube in figure 35) transforms into a hairpin vortex that is
stretched between two adjacent KH vortices and wraps around them at their crests
and troughs.

Schematics of the vortex structures corresponding to t=26 µs (shown in figure 36a)
are illustrated in figure 35. The KH vortex has a larger undulation in this domain
compared to the other two domains and is also farther away from the interface in the
gas zone (compare figure 35 with figures 11 and 27). Two pairs of counter-rotating
hairpins – one on the lobe crest (the black tube), and the other on the trough (the
red tube) – stretch and wrap around the KH vortex (figure 35a). Notice that the red
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KH vortex

(a) (b)

(c)

Crest hairpin

Braid hairpins

New vortex

x

z
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z

x

z

–800.0 –200.0 –10.0 –2.5 –0.5 –800 –200 –30 –2

–100.0 –25.0 –1.0 –0.1

FIGURE 33. (Colour online) λ2 contours on the spanwise crest cross-section, at t= 16 µs
(a), 20 µs (b) and 22 µs (c) of Case D1a.

z

x

Gas

Liquid

KH vortex

Recirculation zone New vortex

1 2 1

3 4 3 4

FIGURE 34. Schematic of the recirculation zone downstream of the KH wave. The hollow
circles denote the KH vortex and the black circles denote the newly formed vortex in the
recirculation zone. The induction of each vortex on the neighbouring vortices is indicated
by the straight arrows with the same shading as the source vortex. The curly arrows
qualitatively indicate the streamlines near the interface.
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Crest hairpin(a)

(b) Crest hairpin

Trough hairpin

Trough hairpin

Lobe

Lobe

KH vortex

A

A

FIGURE 35. (Colour online) 3D Schematics showing the vortex structures in the LoLiD
Domain I (a) – A is the plane in which (b) is drawn; cross-sectional view of the A-plane,
showing the spanwise squeezing of the lobe by induced flow of the hairpin vortices (b).
The vortex schematics are periodic in x- and y-directions.

z

x

z

New vortex

x

–500.0

(a) (b)
–50.0 –1.0 –0.4 –300.0 –250.0 –5.0 –0.1

FIGURE 36. (Colour online) λ2 contours on the spanwise crest cross-section at t= 26 µs
(a) and 30 µs (b) of Case D1a.

hairpin in figure 35 is actually the new vortex that was formed at the wave front
end and was indicated by the black arrows in figures 33 and 36. These hairpins are
periodic in both spanwise (y) and streamwise (x) directions; i.e. the tubes that emerge
at the bottom corner or the left side of figure 35(a) re-enter from the top corner
or the right side of the sketch, respectively. As shown in the cross-sectional view
of the A-plane passing through the lobe in figure 35(b), both the black and the red
hairpins are located slightly above and on both sides of the lobe at this moment. While
the flow induced by the KH vortex creates a streamwise flow on top and bottom
of the lobe, the gas flow induced by these two counter-rotating hairpins (shown by
the curly arrows is figure 35b) generates a spanwise flow towards the lobe midplane.
Consequently, the lobe is both squeezed in the spanwise direction – via the induced
flow of the hairpins – and stretched in the streamwise direction by the induced flow
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FIGURE 37. (Colour online) Velocity fluctuation vector field with respect to the average
velocity of the vortex cores near the interface, and ωy contours on the spanwise crest
cross-section at t= 36 µs of Case D1a. The thick arrows refer to the vortices shown in
figure 36(b). The star symbol marks the saddle point, and the liquid is shown in light
blue.

of the KH vortex. The gas flow induced by the hairpins also lifts the lobe in the
z-direction; see figure 35(b).

While the KH vortex keeps diffusing due to the high gas viscosity, the dark grey
and black vortices wrap around it and are stretched with it as it moves downstream
(figure 36b). Meanwhile, another vortex forms downstream of the wave crest at 30 µs,
indicated by the light grey arrow in figure 36(b). This vortex advects downstream
closely hovering over the interface at 36 µs, while new vortices keep forming
downstream of the KH wave crest at the recirculation zone to replace it; see figure 37.
Hoepffner et al. (2011) were the first to identify this vortical mechanism at low
density ratios. Similar to figure 37, they showed that two vortices exist in the gas –
one is at the instant of leaving the shelter of the wave (the dark grey curly arrow in
figure 37), and the second further downstream is the result of the previous shedding
event (the light grey curly arrow in figure 37). The induced motion of these vortices
entrains the gas and draws it under the protruding lobe (follow the velocity vectors in
the gas zone near the interface in figure 37). As is well known, the streamwise strain
rate is highest at the saddle (Hussain 1986; Lasheras & Choi 1988). The location of
the saddle point is marked by a star symbol in figure 37. The vortices that reach the
saddle point stretch in the streamwise direction and transform into hairpin vortices
with streamwise legs. The location of the black and dark grey hairpins that are
wrapping around the KH vortex are denoted by straight arrows of the corresponding
vortex colour. Since these vortices are mostly streamwise at this cross-section, they
do not have ωy contours. The streamwise elongation of the vortices progressively
aligns the two counter-rotating legs of the hairpins in the streamwise direction. The
self-induction of the counter-rotating legs of the KH vortex and the hairpin vortices,
moves the vortex tubes in the normal direction away from the interface, as shown
schematically in figure 38.

The temporal evolution of the vortex structures in the LoLiD process is illustrated
in figure 39 from a top view of the liquid surface. The liquid surface is illustrated on
the right panel of this figure, and the λ2 isosurfaces (vortex filaments) are depicted
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y

x

Hairpin vortex(a) (b) Self induction

Hairpin vortex legs

z

y

z

FIGURE 38. Schematic showing the self-induction of the streamwise counter-rotating
hairpin legs (a), and in a yz-plane crossing the legs (b). The grey arrows in (b) show
the direction of the self-induction.

on the left. In the beginning of the process (figure 39a), the KH vortex (grey tube)
and the crest hairpin filament (green tube) are completely spanwise oriented (in the
y-direction). The braid hairpins (thinner green tubes) are also primarily spanwise with
some undulations and are half a wavelength (180◦) out of phase with respect to the
crest hairpins in y. This is consistent with the findings of Jarrahbashi et al. (2016)
for non-homogeneous round jets, and Danaila et al. (1997) for like-density jets. At
16 µs, the KH vortices stretch more; the hairpins on the braid also collect into the
crest hairpin and manifest higher undulations (green isosurface in figure 39b). The
trough vortex (red isosurface), which was first seen in figure 33(b) (indicated by black
arrow) also manifests at this time. Both the green and the red vortex filaments slide
underneath the KH roller at the spanwise wave crest (lobe crest), and wrap over it at
the spanwise wave trough (lobe sides). The wave front has been marked with a solid
black line in figure 39 to help find the location of the lobe crest and trough with
respect to the vortices. The KH roller in this process is more stretched than the other
two mechanisms (compare figure 39 with figures 17 and 26).

The vortices become streamwise near the braid in both spanwise crest and trough
at 26 µs (figure 39c). Except for the tip of the KH roller, which is still spanwise,
the rest of the vortex structures are nearly streamwise-oriented. Both the green and
the red hairpins wrap around the KH vortex on top of each other (see figures 35a
and 39c). As the vortices get stretched in the streamwise direction, the lobes follow
their shape and get thinner in the spanwise direction because of the induced gas flow
by the hairpin legs; compare the shape of the lobes with that of the KH vortex just
downstream of the lobe in figure 39(c) to observe their similarity. A neck starts to
form on the lobe edge right between the two hairpins on the two sides of the lobe.
This completely follows the mechanism introduced in figure 35.

Figure 40 shows the cascade and deformation of the vortex filaments in the period
6 µs–52 µs. The λ2 isosurfaces are coloured by the streamwise velocity contours here.
The vortices start from a spanwise orientation and gradually turn streamwise. The
vortex structures cascade from thick and uniform vortices to thin and chaotic structures
as they stretch. The gradual departure of the vortices away from the liquid surface is
also shown in this figure, where the KH roller, indicated by the white arrow, starts on
the liquid surface at 6 µs (figure 40a) and advects away from the interface as it gets
streamwise due to the self-induction process described in figure 38.

At 40 µs (figure 40d), almost all of the vortex structures have become streamwise
except for a short section at the tip of the KH roller. This confirms that the vortices
become streamwise-oriented as they get close to the saddle point. Meanwhile, the
vortices cascade into smaller structures due to turbulence; compare figures 40(c) and
40(d). As the legs of the hairpins get closer to each other, the mutual induction of
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FIGURE 39. (Colour online) λ2 isosurface in a top close-up view of a liquid lobe in
Domain I (Case D1a) (left) and the liquid surface from a top view (right), at t = 6 µs
(a), 16 µs (b) and 26 µs (c). The solid black line in the λ2 isosurface images shows
the location of the lobe front edge. The isosurfaces represent: the KH vortex with λ2 =

O(−1010) (grey), the crest hairpin with λ2=O(−1011) (green) and the trough hairpin with
λ2 =O(−1011) (red).

the legs lifts the hairpins in the normal direction (figure 38), and locates the hairpins
above the lobes. The lobes get thinner as the streamwise counter-rotating legs induce
a gas flow in the spanwise direction towards the lobe midplane, squeezing the lobe
and transforming it into a ligament. Ligament creation is strongly correlated with
its local velocity field, and is induced by the local shear, as indicated by Shinjo
& Umemura (2010). Nearby vortices determine the ligament formation direction.
Spanwise vortices form ligaments normal to the injection direction (i.e. spanwise) and
streamwise vortices form ligaments parallel to the injection direction (i.e. streamwise).
The influence of the vorticity field on the ligament orientation is consistent with the
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FIGURE 40. (Colour online) Temporal evolution of the vortices indicated by the λ2
isosurface coloured by the streamwise velocity contours, at t= 6 µs (a), 16 µs (b), 26 µs
(c), 40 µs (d), 48 µs (e) and 52 µs ( f ) of Case D1a. The liquid surface is shown in blue.
The arrows refer to the vortices denoted in figures 32–36.

findings of Shinjo & Umemura (2010). Following the streamwise-oriented hairpin
vortices in the LoLiD process, mostly streamwise ligaments form in Domain I.

Velocity contours in figure 40(e) show that the streamwise velocity of the vortices
increases at higher z-levels. This can be clearly seen from the gradient of colours
from green (50 m s−1) – near the liquid surface – to red (90 m s−1) – at the tip of
the KH vortex. The liquid surface also experiences a similar velocity gradient, where
the velocity at the tip of the lobe is higher compared to its root; i.e. where the lobe
connects to the liquid sheet. This velocity gradient manifests how the lobe elongates
under the streamwise strain and forms the ligament. The ligaments finally pinch off
and create droplets, as shown in figure 40( f ). The ligament pinch-off follows the
short-wave breakup mode introduced by Shinjo & Umemura (2010). The ligament acts
as a very small round liquid jet emanating from the sheet surface. The ligament tip

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Ir

vi
ne

 L
ib

ra
ri

es
, o

n 
22

 M
ar

 2
01

8 
at

 1
5:

54
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.113
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


338 A. Zandian, W. A. Sirignano and F. Hussain
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FIGURE 41. Pressure contours on the surface of a ligament at t= 42 µs (a), 44 µs (b),
45 µs (c) and 46 µs (d) of Case D1a, showing the ligament pinch-off following the short-
wave breakup mode.

pressure is high in the beginning and contracts due to surface tension and pushes the
inner part along the ligament axis (figure 41a). This motion emanates compression
waves in the upstream direction and a neck forms. The tip bulb grows as it absorbs
the liquid from the upstream liquid sheet by contraction (figure 41b). As the tip bulb
size grows, its inner pressure drops. Consequently, the tip bulb sucks the liquid further
from the neck, as shown in figure 41(b) – causing the neck to become narrower.
When the neck becomes thin enough and its pressure high enough, the circumferential
surface tension cuts the neck and a droplet pinches off (figure 41c). This process
reiterates from the beginning, and the next droplets pinch off identically. The droplets
fly away from the interface under the vortex induction and gain a higher velocity
than the liquid sheet; therefore, the droplets advect downstream with respect to the
jet (figure 40f ).

The vortex structures and lobe deformation at low density ratio (Case D1b) are
shown in figure 42. The lattice made by the KH vortex and the hairpin vortices is very
similar to what was proposed in figure 35 for high density ratios. The only difference
being that as gas density decreases, the KH vortices are less bound to the liquid and
depart from the interface much more easily and meanwhile stretch in both streamwise
and normal z-directions (figure 42a). All the vortices in figure 42(a) exist in the gas
zone and above the liquid interface. Following this vortex deformation, the lobe is
squeezed and thinned in the spanwise direction, while being stretched and lifted by the
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FIGURE 42. (Colour online) λ2 isosurface in a top close-up view of a liquid lobe in
Domain I at low density ratio (Case D1b) at 16 µs (a); the solid black line shows the
lobe front edge. The isosurfaces represent: the KH vortex with λ2=−1011 s−2 (grey), the
outer crest hairpin with λ2 = −2 × 1011 s−2 (green) and the inner trough hairpin with
λ2 = −3 × 1011 s−2 (red). Lobe surface showing the corrugation formation from a top
view at 16 µs (b), 18 µs (c) and a 3D view at 22 µs (d) of Case D1b.

KH vortex normally outward. This causes the ligaments to protrude more and quicker
in the normal direction (figure 42d) compared to higher ρ̂. This figure also proves that
the vortex deformation leads the surface deformation, and not the other way around.

As will be discussed in § 3.5, when density ratio gets higher, i.e. higher Weg, the
vortices are closer to the interface and are less stretched, and more spanwise- rather
than streamwise-oriented. Hence, the gas flow that is induced by the KH vortex shears
the lobe from its top and bottom sides. In this scenario, the lobe thins in the normal
direction instead of the spanwise direction, as shown schematically in figure 43(a).
The blue curly arrows illustrate the qualitative streamlines in this situation, and the
red straight arrows denote the direction of lobe squeeze. The shear due to the gas
flow induced by the spanwise vortices stretches the lobe in the streamwise direction
and thins the lobe and makes it more vulnerable to puncture. This is consistent with
the map in figure 1; as Weg increases, the breakup mechanism shifts from LoLiD to
LoHBrLiD.

At lower density ratio and lower Weg (Domain I), the vortices are more stretched
in the streamwise direction. In this domain (LoLiD mechanism), the streamwise
legs of the hairpin vortex on the two sides of the lobe induce a gas flow in the
spanwise direction towards the lobe midplane, which squeezes and thins the lobe in
the spanwise direction and transforms it into a thick ligament, as shown schematically
from the top view of a lobe in figure 43(b). A neck forms at the location of the
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FIGURE 43. (Colour online) Schematic showing the lobe thinning in the normal direction
in the LoHBrLiD process from a xz-plane (a), and lobe thinning in the spanwise direction
in the LoLiD process from a xy-plane (b).

red arrows. The induced motion of the hairpin legs also lifts the lobe in the z-direction.
Eventually, the ligament pinches off at the neck and a droplet forms following the
short-wave mode discussed above.

In summary, whether the lobe thins in the z-direction and perforates or thins in
the y-direction and forms a ligament depends on the orientation of the vortices in
the vicinity of the lobe. The spanwise vortices result in hole formation and spanwise
bridges, while streamwise vortices result in spanwise lobe compression and streamwise
ligament stretching.

3.5. Streamwise vorticity generation
The streamwise vorticity (ωx) is crucial in initiation of the 3D instability on liquid
jets. ωx generation via vortex stretching and vortex tilting – i.e. strain–vorticity
interactions – and baroclinic effects are studied in this section for a low density ratio
of 0.05 and a high density ratio of 0.5. The contributions of the different terms in the
vorticity equation to ωx generation are compared at two distinctly different density
ratios, to understand the role of density ratio in the liquid-jet breakup. Specifically, the
generation of the three-dimensionality on the liquid sheet interface is addressed in this
section. Jarrahbashi & Sirignano (2014) performed a similar analysis for the round
jet at several different density ratios. They showed for a density ratio of 0.01 that the
baroclinic effect, i.e. the Rayleigh–Taylor (RT) instability, is the dominant cause of
the initiation of 3D structures. This is consistent with the suggestion of Marmottant
& Villermaux (2004), who performed their experiment at lower pressures and gas
density. However, for a density ratio of 0.1 or greater, Jarrahbashi & Sirignano
(2014) showed that the azimuthal tilting and radial tilting of the ring vortices are the
dominant effects in streamwise vorticity generation.

The complete vorticity equation is

Dω
Dt
= (ω · ∇)u−ω(∇ · u)+∇×

(
∇ · τ

ρ

)
+

1
ρ2
∇ρ ×∇p+∇×Fσ , (3.1)

where u and ω are the velocity and vorticity vectors, respectively. τ is the
viscous stress tensor, and Fσ is the surface tension force. Since the fluids are
incompressible in this study, the second term on the right-hand side is zero. A simple
dimensional analysis shows that the viscous diffusion term (the third term on the
right-hand side) scales as µU/ρ∆3, which for a typical case considered in our study,
e.g. µ = O(10−3) kg m−1 s−1, U = O(10) m s−1, ρ = O(103) kg m−3, and a mesh
size of ∆ = 2.5 µm, gives a magnitude of ≈O(1010)s−2. The surface tension term
(the last term) scales as σκ/ρ∆2; which for a typical case with σ =O(10−2) N m−1,
and a radius of curvature of 100 µm (κ = 104 m−1), also gives a result on the order
of 1010 s−2. As will be shown in this section, these two terms are two to three orders
of magnitude smaller than the other terms in (3.1), and therefore have negligible
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contributions to vorticity generation; thus, the rate of change of ωx is approximately

Dωx

Dt
=ωx

∂u
∂x
+ωy

∂u
∂y
+ωz

∂u
∂z
+

1
ρ2

[
∂ρ

∂y
∂p
∂z
−
∂ρ

∂z
∂p
∂y

]
, (3.2)

where ωx, ωy, ωz and u denote the streamwise, spanwise and cross-stream (normal)
vorticities, and the streamwise velocity, respectively. The terms on the right-hand side
denote streamwise stretching, spanwise tilting, normal tilting, baroclinic effect due
to normal pressure gradient, and baroclinic effect due to spanwise pressure gradient,
respectively. Density gradient is normal to the liquid interface; i.e. approximately in
the z direction. The spanwise density gradient, i.e. ∂ρ/∂y, is negligible compared to
∂ρ/∂z, since the sheet cross-section remains fairly rectangular during early instability
development. However, this term accounts for the baroclinic effect, which can deform
the interface in the spanwise direction.

In the cases studied in this section, no initial perturbation is imposed on the
liquid surface. Except for numerical errors which for our purpose correspond to
small random physical disturbances, all terms in the ωx generation (3.2) are initially
zero. Namely, the first and the third terms are zero because there are no vorticity
components in the x and z-directions initially, and the second term is zero since the
streamwise velocity is uniform in the spanwise direction. The baroclinic terms are
identically zero since density and pressure gradients in the y-direction are initially
zero.

Since the streamwise (ωx) and normal vorticities (ωz) cannot be generated, but can
be enhanced, the main source of ωx generation at early times is either the spanwise
vorticity tilting or the baroclinic torque, which become non-zero as a result of small
perturbations of u and p in the spanwise direction. This intuition is consistent with
the results of Jarrahbashi & Sirignano (2014) in round jets at early times, where for
a wide range of density ratios, the baroclinic torque and the azimuthal vortex tilting
terms are dominant for the first 5 µs of their computations; however, they might
be overtaken later by other terms. Baroclinicity becomes more pronounced at lower
density ratios, since the density gradient across the interface is higher.

In the data analysis, the gradients have been calculated and averaged over the
computational interface thickness that equals three mesh points in the z and tangential
directions. The terms in (3.2) are:

(i) streamwise vortex stretching: ωx(∂u/∂x);
(ii) spanwise vortex tilting: ωy(∂u/∂y);

(iii) normal vortex tilting: ωz(∂u/∂z);
(iv) baroclinic vorticity generation: 1/ρ2

[
∂ρ/∂y (∂p/∂z)− (∂ρ/∂z) ∂p/∂y

]
.

Since the peak of the streamwise vorticity occurs at the wave braids (as shown
by figure 49a), the absolute value of the four above-mentioned terms are averaged
only at the braid region. Both top and bottom surfaces have been considered in this
measurement.

Two different density ratios have been analysed in this section. The non-dimensional
characteristics of these two cases are: Rel= 2500, Wel= 14 400, µ̂= 0.0066, and ρ̂ =
0.05 and 0.5. The sheet thickness is h= 50 µm, and no initial perturbation is imposed
on the liquid–gas interface.

Figure 44 shows the contribution of each term in the generation of ωx for the
high and low density ratios, in the first 20 µs. Baroclinicity (circles) is the most
important factor at low density ratio, since the density gradient normal to the interface
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FIGURE 44. Contributions of streamwise vortex stretching (squares), spanwise vortex
tilting (triangles), normal vortex tilting (diamonds), and baroclinicity (circles) to the
generation of ωx at the liquid surface for two density ratios; Rel = 2500, Wel = 14 400,
µ̂= 0.0066; ρ̂ = 0.05 (a) and ρ̂ = 0.5 (b).

is higher, and also the local density in the gas zone near the interface is lower (see
the baroclinic vorticity generation expression given above). However, at high density
ratio, baroclinicity is the least significant. Baroclinicity is only slightly larger than the
streamwise stretching (squares) in the beginning of the computations for high density
ratio, but it is outrun by this term at approximately 13 µs and remains the lowest
of all terms thence. The baroclinic vorticity generation term is an order of magnitude
smaller than the vortex stretching and tilting terms at the end of the computations.

In both low and high density ratios, the spanwise and normal tilting seem to be
more important than the streamwise stretching for the first 20 ms. The spanwise
tilting is high because the initially spanwise vortex lines are gradually tilted in the
streamwise direction. The normal tilting is also high since the velocity gradient is
much higher in the normal direction (∂u/∂z) in the beginning of the computations.
The streamwise stretching, however, has the highest growth rate and almost reaches
the magnitude of vortex tilting at approximately 20 µs. Later on, as ωx grows,
the vortex stretching becomes more significant. These results are consistent with
the findings of Jarrahbashi & Sirignano (2014) for round liquid jets. Jarrahbashi &
Sirignano (2014) also concluded that, generally, the importance of baroclinic vorticity
generation (RT instability) has been overemphasized in the literature, especially at
very high pressures, and other important aspects of vorticity dynamics and similarities
with injection into an alike fluid have been neglected. As described by them and also
evident in our figures, the vortex tilting terms are the largest at early times; however,
new findings show some cancellations, discussed below.

Figures 45 and 46 show the contours of the four ωx-generating terms at 13 µs,
on a y-plane and x-plane, respectively. The spanwise and normal vortex tilting terms
(figures 45b,c and 46b,c) are stronger than the streamwise stretching, but with opposite
signs. As demonstrated in figure 44, the two vortex tilting terms are also nearly equal.
A closer look at their equations explains the reason:

ωy
∂u
∂y
=

∂u
∂z

∂u
∂y
−
∂w
∂x
∂u
∂y
, (3.3)

ωz
∂u
∂z
=
∂v

∂z
∂u
∂z
−

∂u
∂y

∂u
∂z
. (3.4)
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Streamwise stretching: –1.0 0 1.6
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FIGURE 45. (Colour online) Contours of streamwise vortex stretching (a), spanwise vortex
tilting (b), normal vortex tilting (c) and baroclinic generation (d) on a y-plane at t= 13 µs
for ρ̂ = 0.05; Rel = 2500, Wel = 14 400, µ̂= 0.0066.

The two terms in bold font are exactly the same but have opposite signs. Thus, the
only difference in the magnitudes of the spanwise and normal tilting comes from the
other terms (the second term in 3.3 and the first term in 3.4). However, since these
terms deal with gradients of v and w of O(1), which are two orders of magnitude
smaller than u of O(102), they are much smaller than the boldface terms, at the
beginning of the computations. Thus, the deviation of the vortex tilting terms from
the boldface terms is very small, and the two terms nearly cancel each other early on.
Based on this, our earlier conclusion (and also that of Jarrahbashi & Sirignano 2014)
should be modified: the spanwise and normal vortex tilting terms, even though the
largest among the ωx-generating terms, are not the most important in ωx generation,
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FIGURE 46. (Colour online) Contours of streamwise vortex stretching (a), spanwise vortex
tilting (b), normal vortex tilting (c) and baroclinic generation (d) on a x-plane at t= 13 µs
for ρ̂ = 0.05; Rel = 2500, Wel = 14 400, µ̂= 0.0066.

since they nearly cancel each other. The streamwise vortex stretching and baroclinic
effects (RT instability) are the most important in generation of ωx, at high and low
density ratios, respectively.

Figure 45(a) also confirms that the vortex stretching originates from the braids first,
as the strain due to the adjacent primary vortical structures is highest at the saddle
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FIGURE 47. (Colour online) Perturbation velocity vectors superimposed on ωy contours at
t= 13 µs on a y-plane; Rel= 2500, Wel= 14 400, ρ̂= 0.05 and µ̂= 0.0066. Green arrows
denote the maximum stretch along the diverging separatrix. The liquid–gas interface is
indicated by the red line.

(braid) and the ribs are aligned along the diverging separatrix (Hussain 1986). Note
that most of the coloured spots in figure 45(a) are on the braids and not the wave
crests. This is consistent with the experimental observations of earlier researchers
(Bernal & Roshko 1986; Lasheras & Choi 1988; Liepmann & Gharib 1992) for
uniform-density flows. The location and direction of the stretch can also be seen in
figure 47, which shows the fluctuation velocity vectors relative to the average KH
vortex velocity on a blown-up section of the liquid jet at 13 µs. It is evident that the
saddles with the highest strain rate are on the braids between two adjacent vortices,
where the fluctuation velocity vectors depart in the opposite directions. The stretch
direction at the saddle point is shown by the green arrows in figure 47. The saddle
points are in the gas phase, close to the interface. The streamwise vortex stretching
is highest at the saddle points (see figure 45a), where the flow is primarily discrete
ribs (Hussain 1986). The fluid elements are stretched along the interface, i.e. along
the diverging separatrix shown by the green arrows, and compressed normal to the
interface at the saddle points. The centre of the spanwise vortices (rolls) are at the
crest of the interface waves, as denoted by the velocity vectors and the vorticity
contours. Interestingly, the vorticity peak coincides with the interface at the crests,
but not at the troughs, where the vorticity has migrated into the gas phase further
away from the interface. Note that the vorticity contours look like crescents and
not circular as the vorticity is not uniformly distributed as in a vortex column (like
the typical Oseen vortex; see Pradeep & Hussain 2006); the non-centric vorticity
distribution is due to the curved KH rollers.

The stretching and tilting terms are centred at the interface (see figures 45a–c and
46a–c), but the baroclinic torque term 1/ρ2∇ρ ×∇p is always larger in the gas phase
(see figures 45d and 46d). Baroclinic generation, being proportional to 1/ρ2, is two
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FIGURE 48. (Colour online) Contours of baroclinicity on a y-plane at t= 13 µs for ρ̂ =
0.5; Rel = 2500, Wel = 14 400, µ̂= 0.0066.
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FIGURE 49. (Colour online) Contours of streamwise vorticity ωx (a), and spanwise
vorticity ωy (b) at t= 13 µs for ρ̂ = 0.05; Rel = 2500, Wel = 14 400, µ̂= 0.0066.

orders of magnitude larger in the gas phase compared to the liquid phase (for ρ̂ =
0.05). As density ratio increases, the difference between the gas and liquid densities
decreases; thus, the contours of baroclinicity get closer to the liquid interface. This is
seen in the baroclinicity contours of ρ̂ = 0.5 in figure 48. Since the density ratio is
an order of magnitude higher than that of figure 45(d), the local density in the gas
zone is much higher, hence the baroclinicity in the gas is lower and closer to its value
in the liquid. Thus, the contours are closer to the interface (compare figures 48 and
45d). This contributes to the ωx peak being closer to the interface and growing larger
compared to the low density ratios, hence creating and stretching more lobes at higher
density ratios. Also, the peak of baroclinic torque is an order of magnitude smaller in
figure 48 compared to figure 45(d), since the density gradient normal to the interface
is lower at higher density ratios.

As shown in figure 45(d), the baroclinicity contours change sign (i.e. colour)
continuously in x. This pattern is very similar to the hairpin pattern seen in the ωx
contours presented by Jarrahbashi & Sirignano (2014). The ωx and ωy contours for
the current case are illustrated in figure 49. Comparison of the contours of ωx and
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FIGURE 50. Temporal variation of the vorticity components for Rel= 2500, Wel= 14 400,
µ̂= 0.0066; ρ̂ = 0.05 (a) and ρ̂ = 0.5 (b).

baroclinicity (compare figures 49a and 45d) shows that they follow a very similar
pattern. Hence, we can conclude that baroclinicity is the most important factor in
creation of the hairpin vortex structure at low density ratios. The role of the baroclinic
torque in deformation of the surface waves in a stratified shear layer is studied in
detail by Schowalter et al. (1994), and is consistent with our results. The vector
field of figure 47 shows that ωx and ωy are highest at the braids and wave crests,
respectively. This is also evident in the vorticity contours of figure 49.

In order to understand how fast the liquid sheet deforms and manifests 3D
instabilities, the magnitudes of the vorticity components are examined through time.
The 3D instabilities are directly related to the magnitudes of ωx and ωz against ωy,
which exists from the beginning when the flow is still 2D. As mentioned earlier
by Jarrahbashi & Sirignano (2014), Jarrahbashi et al. (2016), and Zandian et al.
(2016), the streamwise vorticity is the main cause of the 3D instabilities and interface
distortion.

The absolute value of each vorticity component, averaged over the entire liquid–gas
interface, is plotted in figure 50 for low and high density ratios. The spanwise vorticity
ωy (KH vortex) is the only component that exists initially. In both cases, ωy grows for
a certain time, until approximately 15 µs, and then onward keeps more or less the
same order of magnitude. The spanwise vorticity is larger for lower density ratio.
ωx and ωz grow very slowly up to 10 µs, after which there is a sudden increase in

their growth rate. In both cases, ωx and ωz are of the same order of magnitude, which
indicates that initially spanwise vortex filaments are lifted in the normal direction
and tilted in the streamwise direction at almost equal rates. The growth rate of ωx

is higher at higher density ratios. ωx reaches the same order of magnitude as ωy at
t= 20 µs, for the high density ratio. For the lower density ratio, however, the growth
is slower. Hence, three-dimensionality manifests sooner at higher gas densities. For
ρ̂ = 0.05, the magnitude of ωx and ωz are still half of ωy at 20 µs; notice that ωy

always remains much higher. Thus, ωy is still dominant and 2D deformations build
up while the streamwise vorticity grows. ωx growth has consequent impacts on the
surface dynamics. In order to understand this, the liquid surface has been compared
at two instances for both low and high density ratios in figure 51. The boxes in this
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FIGURE 51. (Colour online) Liquid–gas interface at t= 15 µs (a,b) and 18 µs (c,d) for
Rel = 2500, Wel = 14 400, µ̂= 0.0066; ρ̂ = 0.05 (a,c), ρ̂ = 0.5 (b,d).

figure show the computational domain edges. The boundary remains far away from
the liquid surface; hence the results are not influenced by the domain size.

The higher ωx growth rate at high density ratio causes the liquid surface to undergo
3D instabilities faster, and there are more streamwise lobes seen at high ρ̂ than at
low ρ̂. At 15 µs, the surface of the sheet with ρ̂ = 0.05 is still roughly 2D, while
the high density-ratio case manifests more 3D deformations, and streamwise lobes
are apparent on top of the primary KH waves. On the other hand, the higher ωy

compared to ωx at low ρ̂ causes the liquid sheet to become antisymmetric much faster
(compare the images in figure 51a,b). Recall that as explained in § 3.2, transition
towards antisymmetry expedites when the two vorticity layers – on top and bottom
surfaces – become stronger, as ωy grows.

The difference in the vorticity dynamics between the two cases has significant
effects on the characteristics of the jet instabilities. As can be seen at t = 18 µs
(figure 51), the low ρ̂ case can be characterized by roll-up of the KH waves, which
creates more spanwise-aligned liquid structures and fewer stretched lobes; the entire
sheet thins faster, and the liquid sheet breaks sooner. On the other hand, at high ρ̂,
the liquid structures orient streamwise more and manifest more lobes. The lobes are
more stretched and thinned due to the larger ωx of the KH vortex legs and are more
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prone to perforation. Hence, the hole-formation mechanism is expected to prevail over
a larger area in the parameter space of Wel versus Rel, at higher density ratios. This
is consistent with the zones in figure 1, and is in accordance with the density-ratio
effects discussed by Zandian et al. (2017).

The top and bottom liquid surfaces tend towards an antisymmetric mode, whether
we start with a flat surface or symmetric perturbations. The antisymmetric behaviour is
eventually favoured since a planar jet is more unstable to the antisymmetric mode than
the symmetric mode in the parameter range of interest. The transformation towards
antisymmetry occurs sooner as the density ratio is lowered.

Marmottant & Villermaux (2004) ‘suggest’ that, for a coaxial round jet, the
transverse (azimuthal) deformation of the wave crests depends on surface tension
(Weg), density ratio (ρ̂), and thickness of the vorticity layer. They propose the
possibility that the transverse instability of the wave crest is the result of lobe and
ligament formation due to opposing shear and surface tension. Unsteady motions
at the sheet rim confer transient accelerations to the liquid perpendicular to the
liquid–gas interface, which trigger a RT type of instability, producing indentations of
the rim, which later result in ligaments.

In a physically different configuration for the leading rim of a transient liquid
sheet, Agbaglah, Josserand & Zaleski (2013) also propose that the dynamics of a
receding liquid sheet initiates a RT instability due to surface tension. They show
that the growth rate of this transverse RT instability increases as the liquid sheet
decelerates. Hence, they suggest that this instability is dominant at low Weg, where
the deceleration is strong enough so that the retraction forces overcome the liquid–gas
inertia. Our mechanisms for the lobe and ligament formation – via vortex interactions
– would not be in effect for a configuration where the oppositely oriented hairpin
pairs do not exist – such as the leading rim of a liquid sheet studied by Agbaglah
et al. (2013). Our results here do not indicate that capillary action plays a major role
in the deformation of the crest rim to create 3D structures, e.g., lobes, corrugations
and ligaments. Once ligaments are formed, capillary action becomes important.

3.6. Vortex dynamics of round jets
In this section, a qualitative comparison is made between the vortex dynamics of the
planar jets (studied here) and round jets (from previous studies) to show that the
causes of different liquid structures, e.g. lobes, holes, corrugations and ligaments, are
the same from the vortex dynamics perspective. For this purpose, the round liquid-jet
computational analysis of Jarrahbashi & Sirignano (2014) and Jarrahbashi et al. (2016)
are mainly incorporated, which are most pertinent to our vortex dynamics analysis. In
a few cases, numerical results of Shinjo & Umemura (2010) are also addressed.

Jarrahbashi & Sirignano (2014) used the vorticity dynamics to explain the formation
of lobes and ligaments in their computations. They mainly used the vorticity contours
and the vortex lines projection on the liquid surface in their analysis. Even though
the explanation for the hole and corrugation formation was less detailed in their
analysis, the vortex dynamics related to lobe formation and ligament elongation in
their round jets is very similar to our findings. Similar to the planar jets, Jarrahbashi
& Sirignano (2014) and many researchers before them (Martin & Meiburg 1991;
Liepmann & Gharib 1992; Brancher et al. 1994; Shinjo & Umemura 2010) observed
the origination of the streamwise vorticity in the braid region of the round jet first.
Later, as the vortices stretch in the streamwise direction, counter-rotating streamwise
vortex pairs are formed. These are shown to be 3D hairpin vortices that wrap around
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the KH rollers. The streamwise vorticity in the ring originates from the upstream braid
adjacent to the ring. The hairpin vortex in the ring region is 180◦ (half wavelength)
out of phase with respect to that of the braid region, similar to what we observed in
our planar sheet. The lobe locations on the cone crests is correlated with locations
of the hairpin vortices in the ring (crest) region.

A very similar mechanism involving hairpin vortices is proposed by Jarrahbashi &
Sirignano (2014) for the formation of ligaments. They show that the streamwise
vorticity projection on the ligament surface changes sign inside the ligament.
Therefore, counter-rotating vortex structures exist both near the lobes in the gas
phase and inside the elongated ligament. The side-jet phenomenon in homogeneous
jets is similar to the formation of the ligaments in two-phase jet flow based on
these hairpin vortical structures. The effects of the pressure gradient on the ligament
elongation and breakup is also addressed by Jarrahbashi & Sirignano (2014). The
absolute value of the pressure decreases towards the centre of the ligament at the
smallest cross-sectional area; however, the pressure decreases radially outward at the
tip of the ligament. Therefore, there is an oscillation of the pressure gradient inside
a ligament that produces a waviness on its surface. According to Shinjo & Umemura
(2010), capillary waves in the short-wave mode propagate inside the ligament and
decrease the diameter of the ligament locally. Surface tension pinches the ligament
at minimum cross-sectional area. However, the large streamwise vorticity observed
inside the ligament might produce a large angular momentum and compete with the
capillary force. Jarrahbashi & Sirignano (2014) define the competition between the
vorticity effects and the capillary forces through a local Weber number, which is the
ratio of the radial pressure gradient due to the transverse velocity difference caused
by the streamwise vorticity inside the ligament and the radial pressure gradient due
to surface tension, i.e. We= ρlω

2
xR3/σ ; where R is the radius of the ligament. These

two pressure gradients have different signs. If this We is much larger than unity, the
vorticity effects inside the ligament can be more important than the capillary force.
In computations of Jarrahbashi & Sirignano (2014) We is very close to unity, hence
inertia can be as important as capillary forces in the ligament breakup.

In a later study, Jarrahbashi et al. (2016) described the mechanism of hole and
bridge formation in a round jet using the vorticity dynamics. They arrived at the same
conclusion of hairpin overlapping for hole formation as described herein (figure 52).
However, the spanwise measure is replaced by the azimuthal angle for round liquid
jets. At high Rel of interest, inertial effects dominate and vortex lines and material
lines are almost identical. Thus, the hairpins are stretched around the braid and
curled at the front of the crest following the fluid motion. In the vicinity of the lobe,
the downstream stretching hairpin from the ring passes over the upstream stretching
hairpin from the braid as the curling action continues, causing the phase variation
sketched in figure 52(a). Jarrahbashi et al. (2016) also observed that the hairpin
vortices approach each other and form a diamond-shaped region of the type shown
by Comte et al. (1992), very similar to the vortex lattice observed experimentally
for single-phase planar mixing layers (see figures 3 and 4 of Comte et al. 1992).
The hole-formation process relates to the increase in circulation originated from
the hairpin vortices that envelope the lobe and make it thinner with time, as was
explained earlier. Hole formation begins on a lobe sheet where the We, based on
lobe thickness and relative gas–liquid velocity, is too large for capillary action to be
the initiating mechanism. As discussed earlier (figure 11), where two hairpin vortices
with same-sign circulation overlap, the liquid sheet between them becomes thinner
because their mutual induction moves the material lines closer to the same radial
position and a hole can form (figure 52b).
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Overlapped
Vortex line from the crest

Tearing

(a) (b) Lobe

Vortex line
from the braid

Vortex pairing

FIGURE 52. Isosurface of the liquid–gas interface accompanied by schematic of hairpin
vortices on the ring and braid regions (a); magnified lobe with projected vortex lines,
showing two families of hairpin vortices from the braid and crest and their pairing at the
centre of the lobe leading to the lobe tearing and hole formation (b). ρ̂ = 0.1, Rel= 1600,
Weg= 23 000. The solid and dashed lines show hairpin portions stretching downstream and
upstream, respectively. Gas flows from right to left. Recast from Jarrahbashi et al. (2016).

Jarrahbashi et al. (2016) express that, although the hole location can be predicted
by hairpin overlap, other flow parameters, e.g. density ratio, viscosity ratio and surface
tension, play a role in changing the flow details and the hole-formation process. For
example, when the surface area of the lobe increases and its edge curvature decreases,
the locations of the holes in neighbouring lobes will be closer to each other, and the
holes merge to create larger holes (Jarrahbashi et al. 2016).

The hole formation and ligament creation from the extension of the holes and
tearing of the rim were observed in the computations of Shinjo & Umemura (2010)
for the same range of Re and We numbers as Jarrahbashi et al. (2016). However, the
lobe puncture was stated to be due to the impact of the droplets that formed earlier
from the breakup of the mushroom-shaped cap on the jet core. Hence, their hole
formation was inertially driven not vortically. Our temporal study produces no cap,
but better represents the behaviour of spatial development after the cap has moved
far downstream.

Jarrahbashi et al. (2016) relate the formation of small-scale corrugations to the
smaller and less-orderly alternating streamwise vorticity regions near the lobes for
lower Rel. However, they do not present a detailed explanation of the corrugation
formation and stretching, nor do they explain the reason for such less-orderly vortical
structures near the ring region. Hence, even though our corrugation formation for
planar jets is also related to smaller scales of the hairpin filaments (at high Rel), this
mechanism cannot be directly compared with their observations.

4. Conclusions
The present study has focused mainly on the vortex dynamics of planar liquid jets.

A vortex has been defined using the λ2 criterion. The relation between the surface
dynamics and the vortex dynamics is sought to explain the physics of different
breakup mechanisms that occur in primary atomization, by conducting DNS with LS
and VoF surface tracking methods.
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Vortex dynamics is able to explain the hairpins formation. The interaction between
the hairpin vortices and the KH vortex explains the perforation of the lobes at
moderate Rel and high Weg, which is attributed to the overlapping of a pair of
oppositely oriented hairpin vortices on top and bottom of the lobe. The formation
of corrugations on the lobe front edge at high Rel and low Weg is also explained
by the structure that hairpins gain due to the induction of the split KH vortices.
At low Rel and low Weg, on the other hand, the lobe perforation and corrugation
formation are inhibited due to the high surface tension and viscous forces, which
damp the small-scale corrugations and resist hole formation. The hairpin vortices
stretch in the normal direction while wrapping around the KH vortex. The induced
gas flow squeezes the lobe from the sides and forms a thick and long ligament. In
summary, the vortex dynamics analysis helps explain the three major atomization
cascades at different flow conditions. The atomization mechanisms for the planar jet
are qualitatively identical to the round-jet mechanisms.

Baroclinicity is the most important factor in generation of the streamwise vortices
and manifestation of 3D instabilities at low density ratios. At higher density ratios,
the streamwise vortices are mostly rendered by streamwise vortex stretching. The
streamwise vorticity growth is higher at higher density ratios, resulting in a faster
appearance of 3D instabilities. As density ratio is reduced, fewer lobes with less
undulation form; hence, hole formation prevails more at higher density ratios.
The relation between vortex dynamics and surface dynamics aids prediction of
liquid-structure formations at different flow conditions and different stages of
the primary atomization. This is very important in prediction and control of the
droplet-size distribution in liquid-jet primary atomization.
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